
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. , NO. , 2023 1

Ride the Tide of Traffic Conditions:
Opportunistic Driving Improves Energy Efficiency

of Timely Truck Transportation
Wenjie Xu, Qingyu Liu, Member, IEEE, Minghua Chen, Fellow, IEEE, and Haibo Zeng, Member, IEEE

Abstract—We study the problem of minimizing fuel consump-
tion of a heavy-duty truck traveling across the national highway
network subject to a hard deadline. We focus on a real-world
setting that traversing a road segment is subject to variable speed
ranges due to dynamic traffic conditions. The consideration of
dynamic traffic conditions not only differentiates our work from
existing ones but also allows us to leverage opportunistic driving to
improve fuel efficiency. The idea is for the truck to strategically
wait (e.g., at highway rest areas) for benign traffic conditions,
so as to traverse subsequent road segments at favorable speeds
for saving fuel. We observe that traffic conditions and thus
speed ranges are mostly stationary within certain duration of
the day, and we term them as phases. We formulate the fuel
consumption minimization problem under phased speed ranges,
considering path planning, speed planning, and opportunistic
driving. We prove that the problem is NP-hard, and develop
a dual-subgradient algorithm for large-/national- scale instances.
We characterize conditions under which the algorithm generates
an optimal solution. We carry out simulations based on real-
world traces over the US highway system. The results show
that our scheme saves up to 20% fuel than a shortest-path
based alternative, of which opportunistic driving contributes
13%. Meanwhile, opportunistic driving also reduces driving time
by 6% as compared to only optimizing path planning and
speed planning. As such, it offers a desirable design option to
simultaneously reduce fuel consumption and hours of driving.
Last but not least, our results highlight a perhaps surprising
observation that dynamic traffic conditions can be exploited to
achieve fuel savings even larger than those under stationary traffic
conditions.

Index Terms—Energy-efficient transportation, timely trans-
portation, opportunistic driving, dynamic traffic conditions, vari-
able speed ranges

I. INTRODUCTION

The United States (US) trucking industry hauls 70% of
all freight tonnage and earns $700.1 billion in gross freight
revenues in 2017 [2]. If measured against the countries’ gross
domestic products (GDPs), the impressive revenue would rank
19 worldwide. Meanwhile, heavy-duty trucks consume 18%
of energy in the whole transportation sector [3], although
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they only account for 4% of the total vehicle population.
Furthermore, a large fraction (26˜34%) of the truck operation
cost is contributed by fuel consumption [3]. In addition, it
is forecasted that global freight activity will increase by a
factor of 2.4 by 2050 [4]. These observations make it critical
to reduce fuel consumption for heavy-duty truck operation.

In this paper, we study an essential problem in the area
of long-haul heavy-duty truck operation, i.e., minimizing fuel
consumption of a heavy-duty truck traveling across national
highway network subject to a hard deadline constraint, under
a real-world setting that traversing a road segment is subject
to variable speed ranges due to dynamic traffic conditions.

Transportation deadline: it is common to have time guar-
antee for freight delivery in truck operation; see examples
and discussions in [5], [6]. As a more recent example,
mobile applications like Uber Freight provide many freight
transportation tasks for truck operators, often associated with
pickup/delivery time requirements.

Traffic condition: In practice, the speed ranges that a truck
can travel on a highway depend on the dynamic traffic
condition, especially on the highways near urban areas. For
example, during the rush hour, such as in the morning, one
may only be able to drive at a speed much lower than
the regulatory speed limit due to harsh traffic conditions.
In contrast, during the off-peak hours, the traffic conditions
are more favorable. Consequently, one can drive around the
regulatory speed limit. The dynamic traffic conditions lead to
variable speed ranges (VSR) of driving.

Path planning and speed planning are two well-recognized
approaches to reducing fuel consumption. When driving along
different paths, differences in distances and road conditions
such as grade can lead to substantially different fuel consump-
tion (e.g., as much as 21% according to [7]). Meanwhile, it
is also critical to drive at an appropriate speed to save fuel,
considering that there is usually a most fuel-efficient speed
for each vehicle. It is about 55 mph (mile per hour) for
many trucks [8], and the fuel economy will deteriorate when
driving at a lower or higher speed. As reported by [9], [10],
every one mph increase in speed (above the most fuel-efficient
speed) causes about 0.14 mpg (mile per gallon) decrease in
fuel economy. Meanwhile, it is also reported in [11] that,
when traffic congestion causes the average speed to be below
45mph, there is a negative impact on vehicle’s carbon dioxide
emissions (and thus fuel consumption) in general. We highlight
that road grade also plays an essential role in speed planning.
This is because, with different grades, the fuel-rate-speed
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Fig. 1: A truck departs from s at time 0 and needs to arrive at
d by time 3. There is a rest area at the end of road segment A.
Each road segment has a length of 50 units and a correspond-
ing fuel consumption rate function f(r) = 0.01×(r−50)2+1,
where r is the traveling speed. The first table shows the
dynamic speed ranges for each road segment. As shown in
the second table, opportunistic driving (O.D.) reduces fuel
consumption and driving time simultaneously in this example.

functions are different. As pointed out in [12], the diversity
of grades brings the potential for reducing fuel consumption
without increasing trip time.

In addition to path planning and speed planning, the con-
sideration of dynamic traffic conditions allows us to leverage
opportunistic driving to further improve fuel efficiency. The
idea is for the truck to strategically wait for benign traffic
conditions, to traverse subsequent road segments at favorable
speeds to save fuel. 1 Specifically, in the US, there are rest
areas with parking facilities located next to highways [14]. As
many as 2.3% of the highway road segments are associated
with a truck rest area; see Sec. VIII for a rough analysis.
Drivers can refuel, rest, or eat without exiting onto secondary
roads [15] in these rest areas. It can be more fuel-efficient for
a truck driver to wait at certain rest areas for an appropriate
amount of time, such that he/she can avoid the harsh traffic
conditions and traverse subsequent road segments at favorable
speeds to save fuel. We note that in practice, truck drivers
usually only need to deliver the loads to the destination before
a given deadline; see, e.g., the freight transportation requests
on Uber Freight [16] and uShip [17]. Early arrival does not
bring additional economic benefit. In such cases, drivers may
prefer to trade a longer trip time (not necessarily longer driving
time) for fuel reduction, as much as 20% as compared to
conceivable shortest-path with fastest speed alternative; see
Sec. VIII for more details.

We give an illustrative example and the optimal solution
without (resp. with) opportunistic driving in Fig. 1. Without
opportunistic driving, the optimal solution is a path of 〈B,C〉

1At a high level, the idea is similar to the method of opportunistic
scheduling widely used in commercial cellular wireless systems [13], in the
sense that both aim to exploit variation in the environment to improve system
performance. In wireless communication, opportunistic scheduling exploits
the communication channel gain’s variation to increase the throughput. In our
scenario of truck transportation, we propose to leverage the dynamic traffic
conditions to drive opportunistically to reduce fuel consumption.
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Fig. 2: The average traffic speeds in a single day on three
randomly selected road segments in the eastern US highway
network.

with speed {rB = 50, rC = 40}. This solution has a total fuel
consumption of 3. In contrast, with opportunistic driving, the
optimal solution is a path of (A,D) with speed {rA = rD =
50}, and rest for one unit of time after traversing A before
entering D. It results in the total fuel consumption of 2. Note
that opportunistic driving also reduces driving time from 2.25
to 2.0 in this example.

We also justify the temporal-spatial diversity of traffic
conditions using real-world data as follows. Similar to [18]–
[21], we model the fuel consumption as a function of driving
speed. We randomly select a road segment in the eastern US,
and we collect the road speed data using the traffic application
programming interface (API) provided by HERE, a location
data service platform [22] (similar to those in Fig. 2). Fig. 3
shows that at 9 PM, the driving speed range corresponds to
a less fuel-efficient part of the fuel-speed function. However,
one hour later, at 10 PM, the traffic condition improves, and
the speed range changes, allowing the truck to travel at a
higher and more fuel-efficient speed to save fuel. Fig. 2 gives
the average traffic speeds across one day of three randomly
selected road segments in the eastern US highway (averaged
over ten days using the data from the HERE map [22]). We
observe that traffic speed shows certain “phase” properties. For
example, all the traffic speeds are high during off-peak hours,
e.g., from 3 AM to 6 AM, and are relatively low during peak
hours, e.g., from 9 AM to 12 PM. As shown in Fig. 2, the
traffic condition also shows spatial diversity, which can be
readily exploited. By opportunistically scheduling the truck to
traverse busy road segments (like road segments near a city or
in the urban area) during the off-rush hour, strategically rest at
rest areas, or drive on free roads (like the ones in the village)
during rush hour, the truck can travel at more energy-efficient
speeds to reduce fuel consumption.

Overall we observe that under dynamic traffic conditions,
it is critical to jointly consider path planning, speed planning,
and opportunistic driving.

In this paper, we study the problem of minimizing fuel
consumption of a truck travelling from an origin to a des-
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Existing Work Design Space Constraint
Path Planning Speed Planning Opportunistic Driving Deadline Speed Range

[23]–[25] 3 7 7 3 N/A
[18], [19] 3 3 7 3 Static
[20], [21] 3 3 7 3 Static

[26] 7 3 7 7 Static
[27] 3 7 7 7 N/A

This paper 3 3 3 3 Variable

TABLE I: Comparison of existing studies for optimizing energy-efficient truck transportation.
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Fig. 3: The normalized fuel-speed function of a loaded truck
for a road segment. The most fuel-economic speed is 32 mph.

tination across a highway network under a hard deadline
constraint. We optimize path planning, speed planning, and
opportunistic driving simultaneously under Variable Speed
Range constraints that result from dynamic traffic conditions.
We remark that our solution allows fuel saving under the
condition that the truck meets the deadline, which is an input
to our algorithm. Hence, the driver or truck can set the deadline
according to their own considerations. We make the following
contributions.

B We introduce the new design space opportunistic driving.
Our study shows that with opportunistic driving, it is possible
to simultaneously reduce the driving time and the energy
consumption, by strategically driving during favorable traffic
conditions. This results in highly desirable operating profiles
previously not possible, and debunks the commonly believed
myth that energy savings are only possible by increasing the
driving time [18]–[21].

B We observe that the traffic conditions and hence the
speed ranges are mostly stationary within certain periods of
the day [28], [29]. We term them as phases. Each phase is a
time interval with fixed speed ranges for each road segment.
The concept of phase is consistent with the classical traffic
theory [30]. We also justify it with real-world data. The
concept of phase captures the dynamic and periodic charac-
teristics of traffic conditions. Leveraging the phase concept,
we develop a phase-expanded-graph based formulation. Within
this formulation, speed range is fixed in the same phase but
differs across phases, making our problem more tractable
while still capturing the dynamics of traffic condition.

B We prove that our problem is NP-hard. We then exploit
the structure of the dual of our phase-based formulation to
design an efficient algorithm. Our algorithm can obtain high-
quality solutions efficiently for large-/national- scale instances.
We further derive a sufficient condition under which our
algorithm generates an optimal solution.
B We conduct extensive simulations using real-world traces

over the US highway network. The results show that our
solutions save up to 20% fuel compared to the shortest path
based alternative, of which 13% is contributed by opportunistic
driving. Meanwhile, opportunistic driving also reduces the
hours of driving by 6% compared to only optimizing path
and speed. As such, opportunistic driving offers a favorable
design option for truck drivers to simultaneously reduce fuel
consumption and hours of driving. Simulation results also
show that our solution is robust to uncertain traffic conditions.

II. RELATED WORK

Energy-efficient trucking has long been an active research
area with efforts on various design options, including path
planning, speed planning, platooning, and autonomous driving,
etc. To the best of our knowledge, this is the first study to
consider the new design space of opportunistic driving by
exploiting dynamic traffic conditions in addition to the two
existing design spaces of path planning and speed planning.
Tab. I compares our work with most related studies.

Restricted Shortest Path (RSP). This problem is about
finding a path from an origin to a destination, to minimize total
cost subject to a deadline constraint. RSP is NP-hard [23],
and researchers have designed both approximation algorithms
with performance guarantee [23] and heuristic schemes [25]
for solving RSP problems. Meanwhile, the RSP setting does
not consider speed planning as the driving speed is fixed on
each road segment and cannot be changed.

PAth selection and Speed Optimization (PASO). The
PASO problem [18], [19] is to find a path from an origin to a
destination and the corresponding travel speeds along the path,
so as to minimize the fuel cost subject to a hard deadline con-
straint. It generalizes the RSP problem by considering speed
optimization and speed-dependent cost functions. Meanwhile,
the PASO problem setting does not consider dynamic speed
ranges, which may well exist in practice, or opportunistic
driving.

Timely tRansportation for Energy-efficient trucKing
(TREK). TREK [20] is an extension of PASO [18], [19].
Given many origin-destination pairs, it requires to find an
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origin-to-destination path for each pair, to minimize total
fuel cost subject to individual time window constraints of
individual pairs. Under a particular setting where there is only
one origin-destination pair, TREK is equivalent to PASO.

There are also related works in the general area of energy-
efficient vehicle transportation.

Time-Dependent Path and Speed Planning. Besides the
research focusing on energy-efficient truck transportation,
there have been lots of efforts devoted to the area of general
Vehicle Routing Problem (VRP). One important extension
of VRP problem is time-dependent VRP problem [31]–[33]
where the vehicle speed is a function of time. Among the
Time Dependent Vehicle Routing Problem (TDVRP) literature,
strategical waiting is shown to reduce emissions in a very
simple artistic network [33]. However, the approach in [33]
either discretizes speed or fixes route, so it does not optimize
route, speed, and waiting time jointly.

Fuel minimization in truck operations. Operating trucks
in a more fuel-economic way has been a major approach
to reducing truck energy consumption. Many design options
have been explored, e.g., platooning two or more trucks [34]–
[36] and reducing idling energy consumption [37]. In addition,
many works also separately optimize the route planning [38],
[39] and speed planning [26], [40] of trucks to reduce fuel
consumption.

Energy-aware routing. Energy-aware routing problem has
been receiving more and more attention. The authors in [41]
introduce the Green Vehicle Routing Problem (GVRP), which
aims to overcome the challenges of limited driving range and
limited refueling infrastructure. Lin et al. [42] give a thorough
survey of the area of Green Vehicle Routing Problem. One
subarea that is more closely related to our work is the Energy
Minimizing Vehicle Routing Problem (EMVRP) [43], where
the authors propose to minimize the energy consumption of
vehicles in VRP problem. Other VRP-related research that
aims to minimize fuel consumption include [44]–[46].

Just-in-time routing. Just-in-time routing problem aims to
deliver goods around the delivery time by adjusting driving
speed and traveling path [47] [48] or by optimizing the pickup
and delivery schedules [49]. Differences between our study
and existing just-in-time ones are the following: (i) In our
study, the deadline constraint is a hard constraint that is not
allowed to be violated. In contrast, just-in-time studies usually
allow violating the deadline with a tardiness cost. (ii) Our
study explores the entire design space of opportunistic driving
for saving fuel, where trucks can strategically wait in rest areas
for benign traffic conditions. This design space has not been
investigated in existing just-in-time studies, and suggests a
new important design option for solving other vehicle delivery
problems with dynamic traffic conditions. For example, one
can consider opportunistic driving when adjusting vehicle trav-
eling profiles based on real-time traffic information towards
just-in-time delivery with lower fuel consumption.

Fuel cost function modelling Fuel cost of vehicles is
affected by many factors. The main factors include travel
time, distance, weather, vehicle design, roadway condition,
traffic condition, and driving behavior, etc [50]. Therefore, it’s
difficult to precisely model and predict the fuel consumption of

vehicles. One approach to model fuel consumption is deriving
the fuel consumption from the first principle [51]–[54]. For
example, Cachón, et al., in [51] used the carbon balance
method to predict the fuel consumption of a natural gas
vehicle. However, such a first-principle based method requires
an understanding of physics and chemical knowledge related
to the vehicle. Another approach is the black box method [50],
where the vehicle is viewed as a black box and a mathe-
matical model of fuel consumption is built from the input-
output data [26], [55]–[61]. For example, Rakha and Ahn [61]
develop a mathematical model where the instantaneous fuel
consumption rate is modelled as a function of instantaneous
speed and instantaneous acceleration.

Moreover, Hellstrom et al. [26] develop an assistance sys-
tem that uses the predicted grade information to optimize
driving speed to save fuel. However, they assume a fixed path
and hence do not optimize path planning. Boriboonsomsin
et al. [27] present an eco-routing navigation system that can
determine the most fuel-economic path. However, they assume
fixed road driving speeds and hence do not optimize speed
planning. Moreover, existing studies [26], [27] assume static
road speed ranges and do not consider opportunistic driving.

In addition to path planning and speed planning, there
are studies exploring other potentials, e.g., autonomous driv-
ing [62], [63], and vehicle platooning [64]–[66], for saving
fuel. Here we remark that the design options explored in [62]–
[66] for fuel consumption reduction differ from our options of
path planning, speed planning, and opportunistic driving. Note
that our solutions provide an energy-efficient path and speed
profile for individual long-haul timely truck transportation and,
thus, can serve as a critical building block for the whole
energy-efficient truck transportation system.

As compared to [1], this paper contains substantial new
results. First, we include the convergence rate analysis of
the proposed dual-subgradient algorithm. Second, we propose
methods of constructing traffic phases from real-world speed
data. Third, we present simulation results under more practical
settings with real-world rest area data. Last but not least, this
paper highlights the practicability and strong performance of
our proposed opportunistic driving in both saving fuel and
reducing driving time.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We model a national highway network as a directed graph
G , (V,E), where E = Es

⋃
Er. An edge e ∈ Es represents

an actual road segment. An edge e ∈ Er is a virtual edge
modelling a rest area where drivers can park their trucks and
rest. Thus waiting at the rest area is modeled as traveling along
a virtual edge. Node v ∈ V represents a connecting point. A
node can connect two actual road segments or connect a rest
area with an actual road segment. For an edge e = (u, v) ∈ E,
we use head(e) to denote its head, i.e., the node v, and use
tail(e) to denote its tail, i.e., the node u.

Note that a road segment in practice may correspond to
multiple segments in the modeled directed graph. For example,
for a 3-mile road with a rest area one mile away from the



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. , NO. , 2023 5

entry point of the road, we represent it by three edges in order
{e1, e2, e3}: e1 ∈ Es corresponds to the first 1-mile segment
of this road, e2 ∈ Er corresponds to the rest area, and e3 ∈ Es
corresponds to the remaining 2-mile segment.

For each e ∈ Es, let De denote its length, and let Rlbe (t)
(resp. Rube (t)) denote its minimum (resp. maximum) speed
limit that depends on the time t when the truck enters e.
We remark that VSR, i.e., the time-varying speed ranges
[Rlbe (t), Rube (t)], differentiates our work from existing studies,
e.g., [18]–[20]. Further, to model opportunistic driving, we
explicitly consider a rest edge set Er where the truck can
strategically wait for benign traffic conditions. Existing stud-
ies [18]–[20] only consider stationary traffic conditions where
Rlbe (t) = Rlbe , Rube (t) = Rube for each e ∈ E = Es, i.e.,
speed ranges are fixed on different edges and do not change
over time. While this is the case for highways in remote areas
that have little population and traffic, constant speed range
does not properly model the dynamic traffic conditions that
are common in urban or metropolitan areas; see an example
in Fig. 2. In contrast, we incorporate both space variation and
time variation of speed range into our model and capture the
dynamics of traffic conditions.

In this paper, we consider a fuel-efficient truck transporta-
tion problem under Variable Speed Range with a hard
deadline constraint. Truck fuel consumption is determined by
many factors, e.g., road grade and driving speed. Similar to
the studies in [18]–[20], we assume for each edge e ∈ E, all
the environment-specific factors such as road grade are fixed.
Thus given the truck’s weight and a specific edge, we can
model the truck fuel consumption rate as a convex function of
driving speed in a reasonable range as justified in [18], [19].
Because of the convexity, it is sufficient to maintain a constant
speed when driving along a road segment (see [18, Lem.
1]), without loss of optimality. Meanwhile, similar to [18]–
[20] and as justified in Sec. VB of [21], we neglect the time
and fuel consumption of the acceleration/deceleration stage
when a truck changes its speed across adjacent edges, as this
stage is usually only several hundred meters long [67], and
the corresponding time and fuel consumption are negligible
compared to those of traveling along one road segment which
is usually several miles long. To further cross verify our
assumption, we use Future Automotive Systems Technology
Simulator (FASTSim) [68] to simulate a class 8 truck’s fuel
consumption under two different scenarios. In the first sce-
nario, the truck travels through a road segment with length
d at the constant speed of v. In the second scenario, the
truck first accelerates from speed 0 mph to speed v, then
keeps the constant speed v and finally decelerates to 0 mph.
We set d = 6 km, v = 36 km/h. And we set the driving
time used for acceleration and deceleration both to be 60s.
The simulation result shows that the fuel cost impact of
acceleration/deceleration is less than 1%, which is much less
than the fuel saving achieved by our solution (that will be seen
in our simulation) and therefore we ignore it for modelling
simplicity.

Overall, we use fe(re) to denote the truck’s fuel consump-
tion rate function to traverse an edge e ∈ E, at a constant
speed of re. We assume that (i) fe(re) = 0,∀e ∈ Er, (since

there is no fuel consumption at rest area) and (ii) fe(re) is
strictly convex in re over a reasonable speed range for any
e ∈ Es (see the discussions in [18]–[20]). With the fuel-rate
function fe(re), we can define the fuel consumption function
ce(te):

ce(te) =

{
te · fe

(
De/te

)
, if e ∈ Es,

0, otherwise (i.e., e ∈ Er),
(1)

which is the fuel consumption for the truck to traverse an
edge e ∈ E, with a travel time of te. We note that the charge
at a rest area e ∈ Er can be taken into account by setting
the ce(te) to be a constant or a linear function. Our model
and algorithm (to be introduced as Alg. 1 in Sec. VI) in this
paper still applies, although the solution obtained for specific
instances may vary.

B. Problem Formulation

We consider the scenario where a truck travels from an
origin s ∈ V to a destination d ∈ V over a national
highway network G. Our objective is to minimize the total
fuel consumption subject to Variable Speed Range constraints
and a hard deadline constraint. VSR constraints require that
the truck driving speed at time t on each edge e ∈ Es must
be no smaller than Rlbe (t) and no larger than Rube (t). The
deadline constraint requires that the total travel time from s to
d, including the truck driving time on edges e ∈ Es and the
truck waiting time on edges e ∈ Er, must not exceed a given
deadline T .

The design space includes path planning, speed planning,
and opportunistic driving. We introduce the following decision
variables: variable p defines a simple path from s to d over
the graph G, and variable te defines the time for the truck to
traverse an edge e ∈ E 2. By vectoring variables as ~t , {te :
∀e ∈ E}, our problem of optimizing Path planning, Speed
Planning, and opportunistic driving to save fuel under VSR
(PSPV) can be formulated as follows:

PSPV : min
p∈P,~t∈Tp

∑
e∈p

ce(te), (2a)

s.t.
∑
e∈p

te ≤ T, (2b)

where P is the set of simple paths from s to d in G, and Tp
defines the set of possible travel time profile of all edges on
the path p, i.e.,

Tp ,
{
~t : Rlbe

(
Se(p,~t)

)
≤ De/te ≤ Rube

(
Se(p,~t)

)
,

∀e ∈ Es : e ∈ p ; 0 ≤ te ≤ T, ∀e ∈ Er : e ∈ p
}
,

(3)

where

Se(p,~t) =

{
0, pre(e, p) is empty;∑
e′∈pre(e,p) te′ , otherwise. (4)

2If e ∈ Es, te is driving time; otherwise if e ∈ Er , te is resting/waiting
time.
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Here pre(e, p) is the set of edges that are on the path p and
are precedent to the edge e, i.e., if the ordered edges of path
p is 〈e1, e2, ..., e|p|〉, then we have:

pre(ek, p) = {ej : ∀j = 1, 2, ..., k − 1}, ∀k = 1, 2, ..., |p|.
(5)

With pre(e, p), Se(p,~t) is the starting time for the truck to
traverse the edge e following the path p and the edge travel
time defined by ~t.

In the formulation in (2), the objective in (2a) minimizes the
fuel consumption and constraint in (2b) restricts the total travel
time, including the total driving time and the total waiting
time, by the deadline T . Note that ~t ∈ Tp are Variable Speed
Range constraints already defined before.

We remark again that PSPV sets objective of saving fuel
without missing the deadline, where the deadline is input by
the user (e.g., trucking company, truck driver) according to
their own considerations. As discussed in Sec. I, in many
real-world scenarios, truck drivers only need to deliver the
freight to the destination before a given deadline and there is
little further economic gain for drivers to arrive early. In these
scenarios, drivers may choose to trade a longer trip time for
fuel reduction.

Our PSPV is NP-hard, since its special case PASO under
stationary traffic conditions is already NP-hard [18]. Thus
it is impossible to obtain an optimal solution for PSPV in
polynomial time, unless P = NP.

Proposition 1. Problem PSPV is NP-hard.

IV. PHASE-DEPENDENT TRAFFIC CONDITION

We now develop a phase-based model for dynamic traffic
conditions. This idea is consistent with both the classical two-
phase (i.e., free flow and congested traffic) traffic theory and
the more recent Kerner’s three-phase (free flow, synchronized
flow, and wide moving jam) theory [30], [69]. We make
the following three observations on the real-world traffic as
illustrated in Fig. 2:
• the whole duration of a day can be partitioned into

different periods with stationary traffic conditions;
• while the traffic condition of a road segment may vary

across different periods, it remains stationary in the same
period for certain duration, each with a length of several
hours;

• different road segments in the same time zone may have
different traffic conditions, but the transitions between
different traffic conditions are pretty synchronous.

We define traffic phases as follows:

Definition 1 (Phase [30], [69]). A (traffic) phase is a time
interval during which the traffic conditions are stationary with
fixed speed ranges for all road segments.

There are multiple conceivable methods to construct phases
using real-world data. We describe one based on speed clus-
tering in Sec. VIII. The traffic conditions of the three road
segments shown in Fig. 2 can be decomposed into six phases.
We also observe that the intra-phase speed variances are
substantially smaller than inter-phase speed variances. This

observation justifies the use of phases as the first-order model
for dynamic traffic conditions.

We now formulate PSPV under the setting of phase-
dependent speed ranges. Let t0 be the time for the truck to
leave the origin s. Suppose the time interval (t0, t0 + T ) can
be divided into N phases 3, i.e.,

(t0, t0 + T ) =
⋃

i∈{1,2,...,N}

t0 +

i−1∑
j=0

Tj , t0 +

i∑
j=0

Tj

 , (6)

where phase i starts at time t0+
∑i−1
j=0 Tj and ends at the time

t0 +
∑i
j=0 Tj . It is clear that Ti is the length of phase i and∑N

i=1 Ti = T ; we set T0 = 0 for convenience of expression.
For each i = 1, 2, ..., N , we denote the fixed minimum speed
limit (resp. fixed maximum speed limit) of a road segment
e ∈ Es at the phase i by Rlb,ie (resp. Rub,ie ), i.e.,

Rlb,ie = Rlbe

t0 +

i−1∑
j=0

Tj

 , Rub,ie = Rube

t0 +

i−1∑
j=0

Tj

 .

(7)
We denote the edge sequence of a path p by 〈e1, e2, ..., e|p|〉,
where ek ∈ E is an edge on p for each k = 1, 2, ..., |p| and
we let |p| denote the number of edges on p. We can map the
edge ek ∈ p and ek ∈ Es to a phase i ∈ {1, 2, ..., N}, once
given a p ∈ P and a ~t ∈ Tp: for each k = 1, 2, ..., |p|,

Ip,~t(ek) = i, if ek ∈ Es and
i−1∑
j=1

Tj ≤
k−1∑
j=1

tej <

i∑
j=1

Tj .

(8)
Given phased speed ranges, we can simplify the feasible set

Tp in (3) to T phase
p as follows:

T phase
p ,

{
~t : R

lb,Ip,~t(e)
e ≤ De/te ≤ R

ub,Ip,~t(e)
e ,

∀e ∈ Es : e ∈ p ; 0 ≤ te ≤ T, ∀e ∈ Er : e ∈ p
}
.

(9)

Now PSPV under phased speed ranges can be formulated as:

min
p∈P,~t∈T phase

p

∑
e∈p

ce(te), (10a)

s.t.
∑
e∈p

te ≤ T. (10b)

The problem, while simplified, is still NP-hard as it covers the
NP-hard problem PASO [19] as a special case.

Proposition 2. PSPV under phased speed ranges is NP-hard.

V. PHASE-EXPANDED NETWORK AND PHASE-BASED
REFORMULATION

To solve PSPV under phased speed ranges (i.e., the problem
in (10)), we construct a phase-expanded network and use it

3Here we remark that the phase division depends on both the real-world
traffic condition and the time window (t0, t0+T ). If T is small, it’s possible
that only a fraction of a particular phase is covered. If T is large, the time
window may cover multiple phases.
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to reformulate PSPV in this section. Our expanded-network-
based formulation can be solved efficiently using a dual-
subgradient-based algorithm to be introduced later in Sec. VI.

We construct the phase-expanded network G̃(Ṽ , Ẽ) from
the input network G(V,E) as follows: we define Ṽ = {vi :
∀v ∈ V,∀i ∈ [N ]} where [N ] , {1, 2, 3, ..., N} and N is the
number of phases. We let Ẽ = H ∪ L ∪R, where H , L, and
R are sets of edges defined below, assuming Vr = {head(e) :
∀e ∈ Er} ∪ {d}:

H , ∪i∈[N ] Hi, where Hi = {(ui, vi) : ∀(u, v) ∈ E}, (11)

L , ∪i∈[N−1] Li, where Li = {(vi, vi+1) : ∀v ∈ V \Vr},
(12)

R , ∪i∈[N−1] Ri, where Ri = {(vi, vi+1) : ∀v ∈ Vr}.
(13)

Here vi ∈ Ṽ denotes the node v ∈ V in phase i, (ui, vi) ∈
Hi ⊆ H denotes the edge (u, v) ∈ E in phase i, and
(vi, vi+1) ∈ Li ⊆ L (resp. (vi, vi+1) ∈ Ri ⊆ R) represents
that a node v ∈ V \Vr (resp. a node v ∈ Vr) leaves phase i
and enters phase i+ 1.

We denote the minimum travel time (resp. maximum travel
time) of an edge ẽ ∈ Ẽ by tlbẽ (resp. tubẽ ). According to the
respective definitions of H , L, and R, we should have:

tlbẽ =


De/R

ub,i
e , if ẽ = (ui, vi) ∈ H and e = (u, v) ∈ Es,

0, if ẽ = (ui, vi) ∈ H and e = (u, v) ∈ Er,
0, if ẽ ∈ L ∪R,

(14)

tubẽ =


De/R

lb,i
e , if ẽ = (ui, vi) ∈ H and e = (u, v) ∈ Es,

Ti, if ẽ = (ui, vi) ∈ H and e = (u, v) ∈ Er,
0, if ẽ ∈ L,
Ti, if ẽ ∈ R.

(15)
For any v ∈ Vr, because one is allowed to wait at v (either

wait on the waiting edge e ∈ Er where head(e) = v that
corresponds to a rest area or wait at the destination d after
arriving ahead of deadline), we set the maximum travel time
from vi to vi+1 to be Ti, i.e., one can wait at v before leaving
phase i for at most time Ti and enter phase i + 1; otherwise
for any u ∈ V \Vr, we set the maximum travel time from ui
to ui+1 to be 0, because waiting on actual road segments are
not allowed and one cannot leave phase i and enter phase i+1
if the arrival time at u does not belong to the phase i+ 1.

For each ẽ ∈ Ẽ, it has the following fuel consumption
function:

cẽ(t) =

{
ce(t), if ẽ = (ui, vi) ∈ H and e = (u, v) ∈ E,
0, if ẽ ∈ L ∪R.

(16)
We denote Ei = Hi∪Li∪Ri, assuming LN = RN = ∅. We

add an edge (s, s1) to E1, and add an edge (dN , d) to EN . For
(s, s1) (resp. (dN , d)), we set its maximum travel time to be
0 (resp. TN ), and set both its minimum travel time and fuel
consumption to be 0. Fig. 4 illustrates our phase-expanded
network, where a feasible solution to the problem (10) can
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Fig. 4: An example of constructing a phase-expanded network
G̃ from an input network G. For G, we assume that (a, b)
is a waiting edge that represents a rest area in Er, while all
the other edges represent road segments in Es. Suppose the
origin is s, the destination is d, and the deadline is

∑4
i=1 Ti

where Ti is the length of phase i. Consider one solution in
G with a path of 〈s, a, b, d〉 and travel time assignments of
{tsa = T1, tab = T2, tbd = T3}. This solution represents that
the truck travels from s to a with a driving time of T1, then
waits from a to b with a time of T2, and finally drives from
b to d with a driving time of T3. It corresponds to a solution
in G̃ with a path of 〈s, s1, a1, a2, b2, b3, d3, d4, d〉 and travel
time assignments of {tss1 = 0, ts1a1 = T1, ta1a2 = 0, ta2b2 =
0, tb2b3 = T2, tb3d3 = T3, td3d4 = 0, td4d = T4}.

be mapped to a corresponding solution in the phase-expanded
network.

In the following we formulate our problem PSPV under
phased speed ranges using the phase-expanded network as
follows:

min
~x∈X ,~t∈T

∑
ẽ∈Ẽ

xẽ · cẽ(tẽ), (17a)

s.t.
∑
ẽ∈Ei

xẽ · tẽ = Ti,∀i ∈ [N ], (17b)

where tẽ defines the driving time (resp. waiting time) on ẽ if
ẽ represents a road segment (resp. a rest area or the rest edge
going into the destination). Since

∑
i∈[N ] Ti = T , the deadline

constraint is naturally guaranteed in our formulation 17. Note
that we allow the truck to arrive ahead of the deadline by
adding a rest edge next to the destination. We define X as
the set of feasible paths from s to d in the phase-expanded
network,

X ,

{
~x : xẽ ∈ {1, 0},∀ẽ ∈ Ẽ, and∑
ẽ∈Out(ṽ)

xẽ −
∑

ẽ∈In(ṽ)

xẽ = 1ṽ=s − 1ṽ=d,∀ṽ ∈ Ṽ
}
,

(18)

where 1{·} is the indicator function, which takes the value
1 (resp. 0) if the statement in {·} is true (resp. false), and
Out(ṽ) = {(ṽ, ũ) : ∀(ṽ, ũ) ∈ Ẽ} (resp. In(ṽ) = {(ũ, ṽ) :
∀(ũ, ṽ) ∈ Ẽ}) is the set of outgoing edges (resp. incoming
edges) of node ṽ ∈ Ṽ . Define

T , {~t : tlbẽ ≤ tẽ ≤ tubẽ ,∀ẽ ∈ Ẽ} (19)
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as the set of possible travel times of traversing each edge
ẽ ∈ Ẽ. The formulation (17) based on phase-expanded net-
work simplifies the PSPV problem shown in (2). However, the
problem in 17 is still a mixed-integer nonlinear programming
problem with nonlinear fuel cost function cẽ(tẽ) and decision
variables tẽ and xẽ multiplying together.

In the formulation in (17), the objective in (17a) minimizes
the total fuel consumption and the time-aware constraints
in (17b) restrict that the aggregate travel time (recall that travel
time includes both driving time, waiting time before arriving
at the destination, and the waiting time at the destination if the
truck arrives ahead of deadline) in each phase is equal to the
length of the phase. Further, since our phase-expanded network
includes edges (di, di+1) with a travel time upper bound of
Ti, for each i = 1, 2, ..., N − 1, our formulation’s feasible
set naturally includes solutions of arriving at the destination
d ahead of deadline. In addition, the total travel time in a
phase should be equal to the length of this phase. We remark
that for (17b) we use equality constraints instead of inequality
constraints, because we assume that the phase does not change
while the truck is running on any edge e ∈ Es and hence can
only change when the truck switches from one edge to another
or waiting on a virtual rest edge e ∈ Er. Our assumption
comes from a practical consideration that the length of a phase
is substantially longer than the travel time on a road segment
(several hours vs. several minutes.). Meanwhile, such equality
constraint simplifies our model by ruling out the case of
driving in two consecutive phases on the same road segment.
Therefore, it is reasonable to use equality constraints so that
we can map a solution in the expanded graph G̃ to a solution
in the actual transportation network G. We also remark that
departure time can be taken into account as a decision variable
by inserting a (pseudo) rest edge going out from the origin.
Then choosing later departure time can be modelled as waiting
on the rest edge.

VI. A SUBGRADIENT-BASED ALGORITHM FOR PSPV
UNDER PHASED SPEED RANGES

In this section, we develop an efficient dual-subgradient
based algorithm for PSPV under phased speed ranges.

A. The Dual Problem

A critical observation of the problem in (17) is that we can
decompose the dual problem to convex optimization problems
and a shortest path problem, once given specific dual vari-
ables. Specifically, we first relax the time-sensitive constraints
in (17b), and get the following Lagrangian function:

L(~x,~t, ~µ) =
∑
i∈[N ]

∑
ẽ∈Ei

xẽcẽ(tẽ) +
∑
i∈[N ]

µi(
∑
ẽ∈Ei

xẽtẽ − Ti)

=
∑
i∈[N ]

∑
ẽ∈Ei

xẽ · (cẽ(tẽ) + µitẽ)−
∑
i∈[N ]

µiTi.

(20)

Then corresponding dual function and dual problem are

max
~µ
D(~µ) , max

~µ
min

~x∈X ,~t∈T
L(~x,~t, ~µ). (21)

We observe that

D(~µ)

=−
∑
i∈[N ]

µiTi + min
~x∈X ,~t∈T

∑
i∈[N ]

∑
ẽ∈Ei

xẽ · (cẽ(tẽ) + µitẽ)

=−
∑
i∈[N ]

µiTi + min
~x∈X

∑
i∈[N ]

∑
ẽ∈Ei

xẽ · min
tlbẽ ≤tẽ≤tub

ẽ

(cẽ(tẽ) + µitẽ)

=−
∑
i∈[N ]

µiTi + min
~x∈X

∑
ẽ∈Ẽ

xẽ · wẽ(~µ), (22)

where
wẽ(~µ) = cẽ(t

∗
ẽ(µi)) + µit

∗
ẽ(µi) (23)

represents a combined cost of fuel and time and t∗ẽ(µi) is the
optimal solution of the cost minimization problem with each
edge ẽ ∈ Ei, for all i ∈ [N ]. Let p∗(~µ) be the corresponding
shortest path from s to d in the phase-expanded network. We
have

D(~µ) = −
∑
i∈[N ]

µiTi +
∑

ẽ∈p∗(~µ)

wẽ(~µ). (24)

Essentially, given specific dual variables ~µ, we can solve a
shortest path problem in the phase-expanded network to obtain
the value of the dual function D(~µ).

B. A Dual-Subgradient Algorithm

It is straightforward to verify that the subgradient of the dual
function with respect to each µi ∈ ~µ is given by δi(~µ) − Ti,
where δi(~µ) is the aggregate travel time of edges ẽ ∈ Ei and
ẽ ∈ p∗(~µ) defined as follows:

δi(~µ) ,
∑

ẽ∈p∗(~µ) and ẽ∈Ei

t∗ẽ(µi). (25)

Intuitively, the dual variable µi can be interpreted as the delay
price in phase i. Larger delay price results in less travel time
in the phase, as formalized in the following lemma.

Lemma 1. δi(~µ) is non-increasing in µi, for all i ∈ [N ].

Proof. We refer the interested reader to Appendix A.

The dual-subgradient algorithm iteratively updates the dual
variables ~µ according to their subgradients. In the k-th iteration
(k ≥ 1),

µi(k) = µi(k − 1) + φ(k) ·
[
δi(~µ(k − 1))− Ti

]
, ∀i ∈ [N ],

(26)
where φ(k) is the step size to be discussed later. When the
dual variable is small and the corresponding phase duration
constraint is violated, the corresponding sub-gradient would
be positive. The algorithm will then increase the dual variable,
i.e., the delay price, and consequently the travel time in
the corresponding phase will decrease, aiming to meet the
phase duration constraint. When the phase duration constraints
are not violated, the corresponding sub-gradients would be
negative and the dual variable would decrease, giving more
weight to the fuel cost in the combined edge cost to optimize
when computing the dual function in (24). We summarize
the dual-subgradient algorithm in Algorithm 1. We define sol
as the solution corresponding to the dual variable ~µ as the
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Algorithm 1 A Dual-subgradient Algorithm for PSPV under
Phased Speed Ranges

1: procedure
2: Set sol = NULL, ite = 1, and µi = 0,∀i ∈ [N ].
3: while ite ≤ ITE LIMIT do
4: ite = ite+1
5: Compute the solution sol′ corresponding to ~µ.
6: if δi(~µ)− Ti = 0,∀i ∈ [N ] then
7: return sol← sol′

8: if sol′ is feasible and consumes less fuel compared
to sol then

9: sol← sol′

10: Update ~µ according to (26), ∀i ∈ [N ]

11: return sol

path p∗(~µ) with a travel time of t∗ẽ(µi) assigned to each edge
ẽ ∈ Ei, for all i ∈ [N ].

It is known the subgradient methods always converges, at a
rate of O

(
1/
√
k
)

[70]. Specific to our scenario, we have the
following observation.

Theorem 1 (Dual Value Convergence). Let D̄k be the best
dual value observed in the first k iterations of Alg. 1. Let D∗
be the optimal dual value, there exists a constant step size,
i.e., φ(·) = φ > 0, and a constant C > 0 such that

D∗ − D̄k ≤
C√
k
, ∀k ≥ 1. (27)

Proof. The proof is presented in Appendix B.

Thm. 1 shows that we can achieve O(1/
√
k) convergence

rate by properly choosing a constant step size. However, the
convergence may not be satisfactory in practice. Therefore, we
adaptively tune the step size according to the method proposed
in [71]. We first initialize a large step size. Gradually, we
decrease it as the gap between the dual value and recovered
primal value gets smaller. When we detect that the gap is
smaller than a predefined threshold, we decrease the step size
even faster. In this way, one is expected to achieve an improved
convergence speed in practice [71].

However, p∗(~µ) and t∗ẽ(~µ), ẽ ∈ Ẽ do not necessarily
form a feasible primal solution. In such cases, we fix the
corresponding path in the original highway network and the
driving time on actual road segments. And then we re-optimize
the waiting time and re-index the phase to try to recover a
feasible primal solution.

In the following, we further give a set of complementary-
slackness-like conditions under which the solution returned by
our algorithm is optimal to our PSPV problem under phased
speed ranges.

Theorem 2. If dual variables ~µ satisfy

δi(~µ)− Ti = 0, ∀i ∈ [N ], (28)

then the corresponding p∗(~µ) with a travel time of t∗ẽ(µi)
assigned to each edge ẽ ∈ Ei, for all i ∈ [N ], is an optimal
solution to our PSPV problem under phased speed ranges.

Proof. The proof is presented in Appendix C.

Our PSPV problem under phased speed range is NP-
hard (Lem. 2), which implies that we can not design an
algorithm to find the optimal solution in polynomial time
unless P = NP. However, Thm. 2 gives a sufficient condi-
tion to certify the optimality of our solution. The theorem
implies that for some special instances, optimal solution is
attainable using our dual-subgradient based algorithm. The
sufficient condition essentially means that the phase duration
constraint is strictly satisfied in all the phases, thus leaving no
space for further speed optimization and opportunistic driving.
However, such equality constraints are not easy to satisfy in
our experiment introduced later due to the inherent structure of
our problem. Nevertheless, we find our solutions still achieve
great performance that is much better than the shortest path
based alternative (See Sec. VIII.).

Overall, we develop a dual-subgradient algorithm to solve
large-/national- scale PSPV problem instances under phased
speed ranges. We further give conditions under which our
algorithm outputs an optimal solution.

VII. DISCUSSIONS

A. Impact of opportunistic driving on traffic condition

Intuitively, the traffic condition may be affected if a large
number of trucks perform opportunistic driving (e.g., they all
choose to drive during a lightly-congested period, and as a
result, the traffic turns heavily congested, which in turn, may
increase the fuel consumption). Today, such influences may be
minor, since the number of trucks only constitutes 4% of the
total vehicle population. In the future, the population of trucks
may grow and other vehicles may also carry out opportunistic
driving. It remains an interesting research direction to consider
the influence on traffic condition when a substantial number
of vehicles, including trucks, perform opportunistic driving.

B. Interactions of multiple vehicles

We focus on the case of a single truck to identify the
design space of opportunistic driving, develop a model and
scheme to extract the maximum benefit, and demonstrate the
potential performance. As an important next step, it is of
great interest to study the scenarios where multiple vehicles
interplay strategically via opportunistic driving. The traffic
condition may be affected if a large number of trucks perform
opportunistic driving. For example, if they all choose to drive
during a lightly-congested period, then the traffic turns heavily
congested, which in turn, increases the fuel consumption.

It remains an interesting research direction to analyze the
strategic interactions among multiple vehicles, performing
opportunistic driving, including trucks and other types of
vehicles.

C. Robustness to real-world speed perturbation

The phased speed range is a first-order model of the dy-
namic traffic speed. In practice, speed range may be perturbed
by random factors such as weather. However, such perturbation
is on a small scale and would not have a significant effect on
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Fig. 5: Simulated US national highway network. (a) Rest areas
in the US national highway network (with red marks) [14]. (b)
Simulated US regions (with red numbers) [18].

the overall fuel consumption. We verify it in our simulation
using real-world traffic speed trace. We use a simple ”re-
balance” heuristic that we round our assigned speed to real
speed range if the perturbed maximum speed limit is even
smaller than the assigned speed and rest less or drive faster if
we are behind the time schedule in the original solution. From
the simulations results in Sec. VIII, we observe that only less
than 1% of the feasible instances miss the deadline, with an
average deadline violation percentage of 0.6%. Meanwhile, the
increase in fuel consumption due to real-world speed range
perturbation is only 0.8%. Hence, our solution is robust to
real-world speed perturbation.

D. Computation and real-time traffic condition

In this paper, we focus on computing an energy-efficient
path plan, speed plan, and opportunistic driving plan for long-
haul heavy-duty truck. Ideally, the computation is done before
the truck starts the trip and the truck will follow the optimized
driving profile to minimize the fuel consumption. In practice,
however, real-time traffic conditions may deviate from those
used in the pre-departure optimization, thus the truck may
need to adjust the driving profiles on the fly to continuously
pursue optimized fuel efficiency. For example, to cope with the
real-time traffic variations, we can re-optimize path planning,
speed planning, and opportunistic driving repeatedly at regular
intervals with real-time traffic information [72], e.g., once
every 15 or 30 minutes.

VIII. PERFORMANCE EVALUATION

We implement our solutions using C++ and python. We run
the experiments on a server cluster with 42 pieces of 2.4 GHz
- 3.4 GHz Intel/AMD processors, each equipped with 20GB
memory on average. We use real-world traces to evaluate the
performance of our algorithm. We represent a PSPV instance
by a tuple of (s, d, T, t0), where s is the origin, d is the
destination, T is the deadline, and t0 is the truck departure
time.

Transportation network and heavy-duty truck. We construct
the US national highway network using the data from the
Clinched Highway Mapping Project [73]. We merge consec-
utive road segments with the same grade. We then focus on
its eastern part with 38, 213 connecting points and 82, 781
directed road segments. As illustrated in Fig. 5b, we divide
the eastern US into 22 regions.Our simulated truck is a class-
8 heavy-duty truck Kenworth T800, which is fully loaded with
36-ton cargo [74].

Rest edges. We collected the location information of rest
areas in the US from POI (point of interest) Factory [75].
We insert each rest area into the closest road segment of the
US highway network as a rest edge. Fig. 5a illustrates the
distribution of rest areas over the US highway network. We
find 1, 906 rest areas in total with truck parking lots in the
highway network of the eastern US, which corresponds to a
rest area density of 1906

82781 = 0.023.
Variable speed ranges. To model road speed ranges that

are dependent on the dynamic traffic condition, we collect
real-time road speed data from HERE map [22] for ten days
(08/18/2017 − 08/27/2017).

Constructing Phases. We first divide one day into 48 time
slots with each time slot’s length to be 30 minutes. For time
slot t, we can get a speed vector vt := (vet )e∈E . Here vet
is the average speed on road segment e at time slot t. The
vector vt characterizes the traffic condition over the simulated
highway network at time slot t. We then use vt as a feature
vector and apply the K-means algorithm [76] to group different
time slots. For each phase, we use the average road traffic
speed as the road maximum speed limit in this phase. We set
the minimum road speed limit to be the minimum of 15mph
and the average speed. We finally divide one day into the
following 6 phases: (11 PM, 7 AM the next day), (7 AM, 8:30
AM), (8:30 AM, 3:30 PM), (3:30 PM, 6:30 PM), (6:30 PM,
8 PM) and (8 PM, 11 PM). The phase division coincides with
our intuition that early morning (11 PM, 7 AM the next day)
and mid-day should have different traffic conditions. There
are also intermediate phases between them. Fig. 6 illustrates
the phase construction result for the three randomly selected
road segments in the eastern US. We can see that the phase
construction results roughly coincide with the average speed
dynamics on the three road segments.

Road fuel consumption. We first collect the grade of each
road segment based on the elevations of nodes provided by
the Elevation Point Query Service [77]. We then use the
advanced vehicle simulator (ADVISOR) [78] to collect the
fuel consumption rate data with different truck driving speeds
for different road grades. Finally, we use MATLAB to fit the
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Fig. 6: The average traffic speeds across one day of three
randomly selected road segments in the eastern US highway.
The vertical lines divide one day into different phases.

fuel consumption rate function using a 3-order polynomial for
each specific road grade. The same model of fuel consumption
rate function was also used in related studies [18]–[20].

Origin-destination pair. We obtain the 2016 American truck
freight transportation origin-destination statistics from [79].
We divide the eastern part of the US into 22 regions as
illustrated in Fig. 5b. We focus on the cross-region long-
haul truck trip and sample the busiest trips’ origin-destination
region pairs. We manually set the origin (resp. destination)
node to the nearest one to the center of the representative
origin (resp. destination) region.

A. Simultaneous Reduction on both Fuel Consumption and
Driving Time by Opportunistic Driving

As discussed in Sec. III-A and illustrated by Fig. 3, the
fuel consumption of traversing a road segment is a convex
function of the driving speed in a specific range. The function
first decreases and then increases with the driving speed. In
the decreasing part, increasing speed benefits both fuel saving
and driving time reduction, while in the increasing part, fuel
saving is at the expense of lowering speed and increasing
driving time. Our solution allows a truck to opportunistically
traverse busy road segments at a more fuel-efficient speed.
Therefore, the truck may be able to save both driving time
and fuel consumption of traversing such road segments. In
contrast, the existing solution PASO [18], [19] assumes static
speed ranges and only saves fuel at the expense of increasing
driving hours.

A conceivable approach that generalizes PASO to our setting
is the following. We first consider a static-speed-range-setting
where we set the minimum speed limit (resp. maximum speed
limit) to be the weighted average minimum speed limit (resp.
average maximum speed limit) in all phases with phase length
as the weight. Thus we get an instance of PASO that can be
solved by the existing algorithm from [18]. We then round
the solution in that if the driving speed exceeds the variable
road speed range, we reset it to be the maximum variable
speed limit in the corresponding phase. After running the
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Fig. 7: We set s = 14, d = 15, t0 = 5 AM and T = 25.0h. Our
solution with O.D. achieves about 10% more fuel saving than
optimization without O.D. while incurring less driving time.
The reason is that the solution with O.D. does several hours’
strategic rest at rest areas during the phase 3 (8:30 AM, 3:30
PM) and the phase 6 (8PM, 11PM), which helps truck avoid
driving in congestions in urban areas. In contrast, solutions
without opportunistic driving does not exploit such design
space and has to drive in unfavorable traffic conditions with
low fuel efficiency, thus incurring higher fuel consumption.
This set of results highlight that opportunistic driving not
only saves fuel but also reduces driving time as compared
to solutions without opportunistic driving.

experiments, we observe that in 22% of the instances, the truck
fails to arrive at the destination on time when we apply the
conceivable approach.

Fig. 7 gives simulation results that suggest that our solution
significantly reduces both fuel consumption and driving time
as compared to optimization without opportunistic driving.
In some instances, we observe that the driving time with
opportunistic driving is even shorter than that of driving as
fast as possible on the shortest path. For example, when we
set s = 9, d = 12, the total driving time of our solution
is 19.4 hours, while the total driving time of the fastest
solution without opportunistic driving is 22.1 hours. The
reason is that at the departure time, the traffic condition is
bad, and the truck could not drive at a high speed even if it
drives as fast as possible. With opportunistic driving, however,
the truck is allowed to strategically wait and avoid the bad
traffic condition. This example highlights the possibility that
opportunistic driving can save driving time even compared to
driving as fast as possible without opportunistic driving.

Fig. 8 gives an example of our route planning results. In
this example, the solution with opportunistic driving consumes
133.5 gallons of fuel, which is 21% less than that of the
solution without opportunistic driving (169.0 gallons). Without
opportunistic driving, the driving time and thus the total travel
time is 25.7h for the truck. With opportunistic driving, the
driving time reduces to 21.3h. With 8.7h strategic waiting
time, the total travel time with opportunistic driving is 30.0h.
We observe that opportunistic driving reduces the driving
time by 17%, without violating the total travel time deadline.
Intuitively, the savings of both fuel consumption and driving
time are from driving in favorable traffic conditions, thanks to
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Origin

Destination

Fig. 8: An example of route planning results, where the
truck travels from the origin in Georgia to the destination in
Massachusetts. The dark blue path is the shortest path. The
red path is the energy-efficient timely transportation solution
without opportunistic driving. The green path is our solution
with opportunistic driving. The light-blue droplets represent
the rest areas along the path of our solution. We note that our
solution waits strategically at the rest area located around I-
95, Newark, DE 19713 (N39◦41′, W75◦39′) marked by a red
triangle in the figure, for about five hours, before entering the
metropolitan area of Philadelphia, to avoid the congestion in
the morning.

opportunistic driving.

B. Performance Evaluation of Our Algorithm

We conduct extensive simulations to evaluate our solution.
For the shortest-path based alternative, we drive as fast as
possible along the shortest path.4 We sample 25 different (s, d)
pairs that evenly cover the eastern US. Given an (s, d) pair, we
select an hour of the day uniformly at random, and a deadline
T from 1.3 ·Tmin to 2.0 ·Tmin with a step of 0.1 ·Tmin (Tmin

is the minimum travelling time from origin to destination
under average static speed ranges). We simulate a total of
840 feasible instances and present the simulation results on
average in Tab. II. We observe that our solution saves 20%
fuel as compared to the fastest-/shortest- path baselines, where

4To generate the shortest path, we tried weights including distance, mini-
mum travel time and fuel cost at the fastest feasible speed under static speed
range. Then we drive as fast as possible on the paths under dynamic traffic
conditions. We find that the fuel costs incurred on the shortest paths with
different weights are very close to each other. The differences are within
0.5%. Therefore, we choose distance as the representative weight.

Shortest Path
Baseline

Our Solution
(without O.D.)

Our Solution
(with O.D.)

Fuel (gallon) 114.4 105.9 91.6
Time (hour) 14.0 16.2 15.1

TABLE II: Fuel consumption and driving time performance
of different algorithms.

13% is contributed by opportunistic driving. Furthermore, our
solution with opportunistic driving saves up to 6% driving time
as compared to solutions without opportunistic driving.

We highlight that the benefit of opportunistic driving is two-
fold. First, it allows one to efficiently save fuel. Second, it,
may at the same time, reduce driving time. Moreover, trucks
implementing opportunistic driving are likely to avoid driving
in heavy traffic conditions, thus alleviating traffic congestion.
Therefore, it is a win-win-win strategy.

C. Impact of Truck Departure Time and Deadline

It is intuitive that one can reduce fuel consumption if the
truck leaves the origin at a time without traffic congestion.
We now study the impact of the departure time t0 on the fuel
consumption.

Fig. 9a gives the fuel consumption of different t0, with
s = 16, d = 17, and T = 17 hours. As seen in Fig. 9a,
opportunistic driving saves 4% fuel on average in this instance,
which is considered significant for heavy-duty truck operation.
We also observe that there is a morning fuel consumption peak,
which coincides with our intuition that driving in the morning
usually consumes more fuel, when the traffic is congested.
Besides, we again observe that opportunistic driving can
save fuel, where the fuel consumption of our solution with
opportunistic driving is less than that without opportunistic
driving. We also observe that perhaps interestingly, the fuel
consumption peak phenomenon is relieved when we allow
opportunistic driving. The reason is that we can strategically
wait and opportunistically traverse those congested roads off
the rush hour. Next, we show the impact of the input deadline.
Fig. 9b gives the fuel consumptions of our solution with
different deadlines T , with s = 16, d = 17, and t0 = 19
PM. With different deadlines, our solution with opportunistic
driving consistently saves fuel as compared to that without
opportunistic driving. On average, opportunistic driving saves
4% fuel in this instance. We observe that fuel consumption
with and without opportunistic driving both decrease a lot as
deadline increases for the results without opportunistic driving.
This is because larger deadlines allow more room for speed
planning.

Overall, the above observations, again, verify that oppor-
tunistic driving saves more fuel than only optimizing path
and speed. The performance gain does not come from merely
driving slower but also from opportunistic driving.

D. Dynamic vs. Static Traffic Conditions

In this subsection, we highlight a perhaps surprising ob-
servation that dynamic traffic conditions (and hence variable
speed ranges) can offer even more fuel saving potential than
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Fig. 9: Comparison of fuel consumption under different depar-
ture time and deadlines. (a) Fuel consumption of our solution
for the instance of s = 16, d = 17, T = 17 hours, with
different departure times t0. (b) Fuel consumption of our
solution for the instance of s = 16, d = 17, t0 = 7 PM,
with different deadlines T .

static traffic conditions. Opportunistic driving allows us to
capitalize on such potential.

We set the static speed range of each road as the average
of the variable speed ranges. We use the existing algorithm
from [18], [19] to obtain the fuel consumption under the
setting of static speed ranges. We run our algorithm to obtain
the fuel consumption under the setting of variable speed
ranges. Fig. 10 presents the fuel-consumption-ratio results
averaged over 200 feasible instances. We notice that without
opportunistic driving, the fuel consumed under dynamic speed
range is consistently larger than that under static speed range.
Meanwhile, opportunistic driving can allow us to exploit the
variable speed ranges to achieve a much larger fuel saving than
that under the static speed range, as much as 16%. Further,
as the delay factor increases, with opportunistic driving, the
fuel-saving ratio is strictly decreasing by as much as 3%.
This is because a larger deadline allows larger design space
for strategic waiting and speed planning, thus larger fuel
saving. In contrast, without opportunistic driving, the ratio
stays roughly the same. Fig. 11 shows that the rest time ratio,
which is defined to be the ratio of rest time to total trip time,
increases with the deadline. The ratio almost doubles from
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Fig. 10: Ratio comparing the fuel consumption of the setting
of variable speed ranges to that of the setting of static speed
ranges, with respect to the delay factor, which is defined as
the ratio of input deadline to time cost of the fastest solution
under static speed range. The smaller the ratio, the better the
fuel saving performance as compared to that under static speed
range.

15% to 28%, when we extend the deadline by 31%. The result
highlights that extending the deadline allows more room for
opportunistic driving. In particular, we see the percentage of
strategic waiting time increases, which in turn contributes to
larger fuel saving.
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Fig. 11: The plot of the waiting time ratio as the delay factor
varies. Here the waiting time ratio is defined as the ratio of
the aggregate waiting duration over the total trip time.

IX. CONCLUSION AND FUTURE WORK

We study the problem of minimizing the fuel consumption
of a heavy-duty truck traveling across national highway subject
to a hard deadline, where traversing a road is subject to
variable speed ranges due to dynamic traffic conditions. We
propose a new design space, opportunistic driving, to exploit
the dynamic traffic conditions for saving fuel. We observe that
real-world speed ranges are mostly phase-dependent, where a
phase is a time interval with stationary traffic conditions and
hence fixed speed ranges. We prove that our problem under
phased speed ranges is NP-hard. We then develop an efficient
dual-subgradient algorithm for solving large-/national- scale
instances. The algorithm always converges and we charac-
terize conditions under which the algorithm generates an
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optimal solution. We use real-world traces to conduct extensive
simulations over the US highway system, and observe that
our algorithm saves up to 20% fuel compared to fastest-
/shortest- path baselines, among which 13% is contributed by
opportunistic driving. Meanwhile, opportunistic driving also
reduces driving time by 6% as compared to only optimizing
path planning and speed planning. As such, opportunistic
driving offers a desirable design option to simultaneously
reduce fuel consumption and hours of driving. We also observe
that, perhaps surprisingly, dynamic traffic conditions can be
exploited to save more fuel than that under static traffic
conditions.

It is an interesting future direction to evaluate the impact of
opportunistic driving on background traffic oblivious to oppor-
tunistic driving. It is also interesting to model and analyze the
interactions among vehicles performing opportunistic driving.
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APPENDIX A
PROOF OF LEM. 1

Proof. We show this for δi and µi while keeping µ−i fixed.
Let us consider any two µi1, µi2 with µi1 ≤ µi2. Suppose the
optimal path for µi1 is p1, and the optimal path for µi2 is p2.
For any path p and µi, we denote its optimal generalized path
cost by

Wp(µi) = C(µi) + ∆p(~t
∗(µi), µi), (29)

where we denote its augmented path fuel cost by

∆p(~t, µi) =
∑
i∈[N ]

∑
ẽ∈Ei

x∗ẽ(µi)Cẽ(µi, tẽ). (30)

For simplicity here we omit the other dual variables in C(·)
and Cẽ(·) since they are fixed. By the definition of ∆(·), we
have

∆p(~t, µi1)−∆p(~t, µi2) = (µi1 − µi2)(δi(~t, p)− Ti), (31)

where δi(~t, p) :=
∑
ẽ∈Ei∩p tẽ. Since p1 is the optimal path

for dual problem when µi = µi1, using the optimality of p1,
we have

Wp1(µi1) = C(µi1) + ∆p1(~t ∗(µi1), µi1)

≤ C(µi1) + ∆p2(~t ∗(µi1), µi1)

≤ C(µi1) + ∆p2(~t ∗(µi2), µi1). (32)

The second inequality is true because

Cẽ(µi1, t
∗
ẽ (µi1)) = mintlẽ≤tẽ≤tuẽ Cẽ(µi1, tẽ)

≤ Cẽ(µi1, t
∗
ẽ (µi2)), (33)

where Cẽ(µi, tẽ) := cẽ(tẽ) + µjtẽ, ẽ ∈ Ej . Then, we can get

∆p1(~t ∗(µi1), µi1) ≤ ∆p2(~t ∗(µi2), µi1). (34)

Similarly, for p2 and µi2, we can get

Wp2(µi2) = C(µi2) + ∆p2(~t ∗(µi2), µi2)

≤ C(µi2) + ∆p1(~t ∗(µi1), µi2), (35)

http://cmap.m-plex.com/
http://cmap.m-plex.com/
http://www.kenworth.com/trucks/t800
http://www.poi-factory.com/node/6643
http://www.poi-factory.com/node/6643
http://nationalmap.gov/epqs/
https://faf.ornl.gov/fafweb/
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which is equivalent to

∆p2(~t ∗(µi2), µi2) ≤ ∆p1(~t ∗(µi1), µi2). (36)

Summing inequality 34 and inequality 36, we get that

∆p1(~t ∗(µi1), µi1)−∆p1(~t ∗(µi1), µi2) ≤
∆p2(~t ∗(µi2), µi1)−∆p2(~t ∗(µi2), µi2). (37)

By the definition of ∆(·), we can get

(µi1 − µi2)(δi(~t
∗(µi1), p1))− δi(~t ∗(µi2), p2)) ≤ 0. (38)

Since we assume that µi1 ≤ µi2, we must have

δi(~t
∗(µi1), p1)) ≥ δi(~t ∗(µi2), p2). (39)

This means δ∗i (~µ) is nonincreasing in µi.

APPENDIX B
PROOF OF THM. 1

Proof. We follow the proof idea from the discussion in [70,
Section 3.3]. Let ~µ∗ denote the optimal dual variable. We
define R , ‖~µ∗‖ and H , N maxi∈[N ]

{∑
ẽ∈Ei

tubẽ + Ti

}
.

And we use ~µ[i] to denote the dual variables in the i-th
iteration. It is easy to verify that,

R ≥
∥∥~µ[0]− ~µ∗

∥∥ =‖~µ∗‖ = R, (40)

and
H ≥

∥∥D′(~µ)
∥∥ , (41)

where D′(~µ) is the sub-gradient of D(~µ) used in Alg. 1. And
let φ be the constant step size we choose when we apply the
sub-gradient based algorithm. We can derive that,∥∥~µ[i+ 1]− ~µ∗

∥∥2 =
∥∥~µ[i] + φD′(~µ[i])− ~µ∗

∥∥2
=
∥∥~µ[i]− ~µ∗

∥∥2 + 2φD′(~µ[i])T
(
~µ[i]− ~µ∗

)
+ φ2

∥∥D′(~µ[i])
∥∥2

≤
∥∥~µ[i]− ~µ∗

∥∥2 − 2φ (D∗ −Di) + φ2
∥∥D′(~µ[i])

∥∥2 . (42)

The last inequality follows the definition of subgradient, which
gives D∗ −Di ≤ D′(~µ[i])T

(
~µ∗ − ~µ[i]

)
.

By applying (42) recursively, we get∥∥~µ[k + 1]− ~µ∗
∥∥2 ≤∥∥~µ[1]− ~µ∗

∥∥2 − 2φ

k∑
i=1

(D∗ −Di)

+ φ2
k∑
i=1

∥∥D′(~µ[i])
∥∥2 . (43)

By using
∥∥~µ[i+ 1]− ~µ∗

∥∥2 ≥ 0,
∥∥~µ[1]− ~µ∗

∥∥2 ≤ R2 and H ≥∥∥D′(~µ[i])
∥∥, we have,

2φ

k∑
i=1

(D∗ −Di) ≤ R2 + φ2kH2. (44)

Since D∗ −Di ≥ D∗ − D̄k, we have

D∗ − D̄k ≤
R2 + φ2kH2

2αk
. (45)

We minimize the bound by setting φ = R
H
√
k

and get

D∗ − D̄k ≤
RH√
k
. (46)

However, the optimal dual variable ~µ∗ is unknown before
we actually run the sub-gradient based algorithm. So we need
to give an upper bound R that is agnostic about the value of
~µ∗. Assume there exists a finite optimal solution ~µ∗ for the
dual problem,

D (~µ∗) = max
~µ
D (~µ) ≥ D (0) . (47)

Without loss of generality, we assume ~x a, ~t a be a solution
with fastest speed such that

δi

(
~x a,~t a

)
= −Ti, ∀i ∈ [N ] that satisfies µ∗i ≥ 0, (48)

δi

(
~x a,~t a

)
> Ti, ∀i ∈ [N ] that satisfies µ∗i < 0, (49)

which means we do not spend time on edges in Ei if µ∗i ≥ 0
and we spend more than two times Ti time on edges in Ei if
µ∗i < 0. Since

D (~µ∗) = min
~x∈X

min
~t∈T
L
(
~x,~t, ~µ∗

)
, (50)

then we have

L
(
~x a,~t a, ~µ∗

)
≥ D (~µ∗) ≥ D (0) . (51)

Let ~x 0,~t 0 denote the optimal solution for min
~x∈X

min
~t∈T
L
(
~x,~t,~0

)
.

According to the definition of L
(
~x a,~t a, ~λ∗

)
, we have

C
(
~x a,~t a

)
+

N∑
i=1

µ∗i

(
δi

(
~x a,~t a

)
− Ti

)
≥ C

(
~x 0,~t 0

)
,

(52)

where
C
(
~x,~t
)

=
∑
ẽ∈E

cẽ(tẽ)xẽ. (53)

Since
µ∗i

(
δi

(
~x a,~t a

)
− Ti

)
≤ 0, (54)

we can obtain a bound for µ∗i , which is

µ∗i ≤
C
(
~x 0,~t 0

)
− C

(
~x a,~t a

)
δi

(
~x a,~t a

) if µ∗i ≥ 0; (55)

µ∗i ≥
C
(
~x 0,~t 0

)
− C

(
~x a,~t a

)
δi

(
~x a,~t a

) if µ∗i < 0. (56)

Therefore, we have,

|µ∗i | ≤

∣∣∣∣C (~x 0,~t 0
)
− C

(
~x a,~t a

)∣∣∣∣∣∣∣∣δi (~x a,~t a)∣∣∣∣
≤ 2

Ti

∑
ẽ∈Ẽ

max
tlbẽ ≤tẽ≤tub

ẽ

cẽ(tẽ). (57)

Now we can give an upper bound of
∥∥~µ[0]− ~µ∗

∥∥ that is
agnostic about the value of ~µ∗

R = 2
∑
i∈[N ]

1

Ti

∑
ẽ∈Ẽ

max
tlbẽ ≤tẽ≤tub

ẽ

cẽ(tẽ). (58)
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APPENDIX C
PROOF OF THM. 2

Proof. Let sol(~µ) denote the solution to PSPV and corre-
sponds to dual variables ~µ, i.e., the solution with a path of
p∗(~µ) and a travel time profile of t∗ẽ(µi) assigned to each
edge ẽ ∈ Ei, for all i ∈ [N ].

Suppose ~µ∗ are dual variables that satisfy conditions (28).
Satisfied conditions (28) imply following:∑
ẽ∈p∗(~µ∗): ẽ∈Ei

t∗ẽ(µ
∗
i ) = δ(µ∗i , ~µ

∗) = Ti, ∀i ∈ [N ], (59)

i.e., the time-sensitive constraints (17b) of the formulation (17)
are satisfied. Hence, sol(~µ∗) is feasible to PSPV under phased
speed ranges.

To prove the optimality of sol(~µ∗), we first look at the value
of the objective function (17a) of sol(~µ∗):

Obj(sol(~µ∗)) =
∑

ẽ∈p∗(~µ∗)

cẽ(tẽ) =
∑
i∈[N ]

∑
ẽ∈p∗(~µ∗):
ẽ∈Ei

cẽ(t
∗
ẽ(µ
∗
i )).

(60)
Next, we look at the value of the dual function correspond-

ing to sol(~µ∗):

Dual(sol(~µ∗)) = D(~µ∗)

= −
∑
i∈[N ]

µ∗i Ti +
∑

ẽ∈p∗(~µ∗)

wẽ(~µ
∗)

= −
∑
i∈[N ]

µ∗i Ti +
∑
i∈[N ]

∑
ẽ∈p∗(~µ∗):
ẽ∈Ei

[
cẽ(t

∗
ẽ(µ
∗
i )) + µ∗i t

∗
ẽ(µ
∗
i )
]

=
∑
i∈[N ]

∑
ẽ∈p∗(~µ∗):
ẽ∈Ei

cẽ(t
∗
ẽ(µ
∗
i ))

+
∑
i∈[N ]

µ∗i ·

−Ti +
∑

ẽ∈p∗(~µ∗):
ẽ∈Ei

t∗ẽ(µ
∗
i )


(a)
=
∑
i∈[N ]

∑
ẽ∈p∗(~µ∗):
ẽ∈Ei

cẽ(t
∗
ẽ(µ
∗
i )), (61)

where the equality (a) comes from (59).
Now with equalities (60) and (61), we have:

Obj(sol(~µ∗))− Dual(sol(~µ∗)) = 0, (62)

i.e., the duality gap is zero, implying that sol(~µ∗) must be an
optimal solution to our PSPV problem under phased speed
ranges.
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