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Abstract Efficient global optimization is a widely used method for optimizing
expensive black-box functions. In this paper, we study the worst-case oracle
complexity of the efficient global optimization problem. In contrast to existing
kernel-specific results, we derive a unified lower bound for the oracle complex-
ity of efficient global optimization in terms of the metric entropy of a ball
in its corresponding reproducing kernel Hilbert space (RKHS). Moreover, we
show that this lower bound nearly matches the upper bound attained by non-
adaptive search algorithms, for the commonly used squared exponential kernel
and the Matérn kernel with a large smoothness parameter ν. This matching is
up to a replacement of d/2 by d and a logarithmic term log R

ϵ , where d is the
dimension of input space, R is the upper bound for the norm of the unknown
black-box function, and ϵ is the desired accuracy. That is to say, our lower
bound is nearly optimal for these kernels.
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1 Introduction

Black-box optimization by sequentially evaluating different candidate solu-
tions without access to gradient information is a pervasive problem. For ex-
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ample, tuning the hyperparameters of machine learning models [3, 30], opti-
mizing control system performance [2, 40] and discovering drugs or design-
ing materials [10, 21], etc., can all be formulated as a black-box optimization
problem without explicit gradient information. Therefore, efficient global opti-
mization [13,29], as a sample-efficient method to solve the expensive black-box
optimization problem without explicit gradient information, has recently been
receiving much attention. Efficient global optimization is based on the idea of
constructing a surrogate function using Gaussian process regression or kernel
ridge regression to guide the search of optimal solution [13].

In many applications, e.g., tuning the hyperparameters of a deep neural
network (where the objective function in discrete variables, such as number of
layers, can be regarded as a restriction of continuous function), each sample can
take significant resources such as time and computation. For such problems,
understanding the sample complexity of efficient global optimization is of great
theoretical interest and practical relevance.

There is a large body of literature on the convergence rates of particu-
lar efficient global optimization algorithms [7, 26, 31, 33, 34, 37]. Two typical
analysis set-ups are the Bayesian and non-Bayesian settings1. In the Bayesian
setting, the black-box function is assumed to be sampled from a Gaussian pro-
cess, whereas in the non-Bayesian setting, the black-box function is assumed
to be regular in the sense of having a bounded norm in the corresponding
reproducing kernel Hilbert space.

As a complement to convergence analysis of different algorithms, complex-
ity analysis tries to understand the inherent hardness of a problem. Specifi-
cally, we are interested in answering the question: for a class of optimization
problems, how many queries to an oracle, which returns some information
about the function, are necessary to guarantee the identification of a solution
with objective value at most ϵ worse than the optimal value [22]? Without a
complexity analysis, we cannot tell whether existing algorithms can be im-
proved further in terms of convergence rate. This problem is well studied for
convex optimization (e.g., in [22]), but less well understood for efficient global
optimization.

Intuitively, the complexity of efficient global optimization largely depends
on the richness or complexity of the functions inside the corresponding repro-
ducing kernel Hilbert space (RKHS). Indeed, selecting the proper RKHS or the
kernel function k is an important research question in the literature [14, 15].
Intuitively, the choice of the kernel functions captures the prior knowledge
on the black-box function to optimize. As an extreme example, if we know
the ground-truth black-box function is linear, we can adopt the linear kernel.
Then after a finite number of noiseless function evaluations, we can uniquely
determine the ground-truth function and hence the optimal solution. However,
agnostically selecting simple kernels may lead to a surrogate function that is
not expressive enough. For example, when the black-box function is nonlinear,
using an RKHS with a linear kernel can not learn the ground-truth function

1 The Bayesian setting is typically referred to as Bayesian optimization.
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well. For such a function, it is more reasonable to select a more expressive
kernel such as squared exponential kernel. To measure the complexity of a set
of functions, metric entropy [16] is widely used in learning theory. However,
as far as we know, the explicit connection between a complexity measure such
as metric entropy for a function set and the problem complexity of efficient
global optimization has not been established.

This paper focuses on the complexity analysis of efficient global optimiza-
tion with general kernel functions in the non-Bayesian and noiseless setting.
Although the noisy setting is more realistic from the practical point of view, it
is also critical to consider the noiseless setting from the complexity-theoretic
point of view. The rationale is that the noise may introduce additional sta-
tistical complexity to the problem and corrupts the inherent complexity anal-
ysis of the efficient global optimization. In addition, noiseless setting is not
a simple extension of the noisy setting. Existing analysis under noisy set-
ting (e.g., [5, 25, 27, 28]) typically relies on strictly positive noise variance.
Simply setting noise variance to zero makes the analysis and results diminish.
For example, the noisy bound for Squared Exponential (SE) kernel in [28] is
Ω(σ

2

ϵ2

(
log R

ϵ )
d
2

)
, which is dominated by σ2

ϵ2 , where σ2 is the noise variance,
ϵ is the desired accuracy,2 and R is the function norm upper bound. Simply
setting σ = 0 gives a meaningless Ω(0) bound. Without the analysis under
noiseless setting, it is unclear whether this dominant σ2

ϵ2 term is due to noise
or the inherent complexity of the RKHS.
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)
Table 1 A summary of the state-of-the-art complexity result for efficient global optimiza-
tion. σ2 is the noise variance. R is the function norm upper bound. d is the dimension of
input space. ν is the smoothness parameter of Matérn kernel. N/A means ‘not applicable’.
S(X ) is the ball in the corresponding reproducing kernel Hilbert space, with input set X .
N (·, ·, ·) is the standard covering number to be formally defined in Sec. 4.

To highlight our originality and contribution, a comparison of our results
with the state-of-the-art complexity analysis is given in Tab. 1. As far as we
know, our work is the first to give a unified general lower bound in terms of
metric entropy. Interestingly, we also notice that the commonly seen Θ(1/ϵ2)
term in the noisy setting disappears in the noiseless setting, which matches our
intuition that estimating a point with Gaussian noise typically takes Θ(1/ϵ2)
sample complexity. Specifically, our contributions include:

– We introduce a new set of analysis techniques and derive a general unified
lower bound for the deterministic oracle complexity of efficient global op-

2 We will use ϵ to denote the desired accuracy throughout the paper.
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timization in terms of the metric entropy of the function space ball in the
corresponding reproducing kernel Hilbert space, providing a unified and
intuitive understanding for the complexity of efficient global optimization.

– Our general lower bound allows us to leverage existing estimates of the
covering number of the function space ball in the RKHS to derive kernel-
specific lower bounds for the commonly used squared exponential kernel
and Matérn kernel with a large smoothness parameter ν, without the com-
monly seen 1/ϵ2 term for the noisy setting interestingly. Furthermore, the
lower bound for squared exponential kernel under noiseless setting is de-
rived for the first time, to the best of our knowledge.

– We further show that these kernel-specific lower bounds nearly match the
upper bounds attained by some non-adaptive search algorithms, where the
upper bound for the squared exponential kernel is newly derived in this
paper. Hence, our general lower bound is close to optimal for these specific
kernels.

2 Related work

There has been a large body of literature on analyzing the complexity and the
convergence properties of efficient global optimization. We first summarize the
relevant literature area by area. We then highlight the position and the original
contribution of our paper.

Algorithm-dependent Convergence Analysis. One line of research
analyzes the property of particular types of algorithms. For example, some
papers [9, 17] analyze the consistency of efficient global optimization algo-
rithms. [34, 37] analyze the convergence property of the expected improve-
ment algorithm. [33] proposes a maximum variance reduction algorithm that
achieves optimal order simple regret for particular kernel functions. Under the
assumption of Hölder continuity of the covariance function, lower and upper
bounds are derived for the Bayesian setting in [12]. Among this set of liter-
ature, the works on information-theoretic upper bounds are more relevant to
our metric-entropy lower bound. [31] derives an information-theoretic upper
bound for the cumulative regret of the upper confidence bound algorithm. [26]
gives an information-theoretic analysis of Thompson sampling. However, there
is no existing work that provides a complementary information-theoretic lower
bound.

Kernel-specific Lower Bound Analysis. As for lower bounds or com-
plexity analysis, [4] derives a lower bound of simple regret for Matérn kernel
in a noise-free setting. [28] provides lower bounds of both simple regret and
cumulative regret for the squared exponential and Matérn kernels. With the
Matérn kernel, a tight regret bound has been provided for Bayesian optimiza-
tion in one dimension in [27]. With heavy-tailed noise in the non-Bayesian
setting, a cumulative regret lower bound has been provided for the Matérn
and squared exponential kernels in [25]. More recently, [5] provides lower
bounds for both standard and robust Gaussian process bandit optimization.
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However, unlike the information-theoretic upper bound shown in [31], the ex-
isting lower bound results are mostly (if not all) restricted to specific kernel
functions (mostly squared exponential and Matérn). The explicit connection
between the optimization lower bound and the complexity of the RKHS has
not been established so far in the existing literature. In this paper, we establish
such a connection by constructing a lower bound in terms of metric entropy.

Covering Number Estimate in RKHS. Another area of research rele-
vant to this paper is the estimate of covering number or metric entropy in func-
tion spaces. Some of the classical results are used in this paper. In [8, Sec. 3.3],
the covering number for the function space ball in a Besov space is estimated.
A technique to derive a lower estimate of the covering number for a stationary
kernel is developed in [42], and as an application, a lower bound of a function
space ball’s covering number for the squared exponential kernel is derived.

General Information-based Complexity Analysis. Our focus is effi-
cient global optimization in this paper, due to its increasing popularity and lack
of a unified and intuitive understanding for its complexity. Nevertheless, there
have also been many classical works in the general area of information-based
complexity analysis. For example, it is shown that the optimal convergence
rates of global optimization are equivalent to those of approximation in the
sup-norm [23]. However, approximation in the sup-norm itself is another hard
problem with its complexity to be understood. There is also another set of
results that try to connect the finite rank approximation, which is more gen-
eral than sample based interpolation, with metric entropy [8,18,32]. However,
they can not be directly applied to our efficient global optimization problem,
due to the general finite rank approximation definitions that are inconsistent
with our sample based efficient global optimization setting.

Minimax Rates for Kernel Regression. In learning theory, there are
well-established results on covering number bound of learning errors. Many
existing works [6, 24] derive covering number bounds for the generalization
error of learning problems with RKHS or more general hypothetical spaces.
However, in a typical learning setting, the sample points and corresponding
observations are assumed to be identically and independently distributed, with
observations corrupted by noise. To the contrast, the setting we consider in
this paper is an essentially different global optimization problem. Specifically,
our goal is to identify a solution with desired level of optimality and the sample
point can be adaptively selected.

Position and Originality of Our Work. Despite the rich literature sum-
marized above, we notice two major limitations of the state-of-the-art complex-
ity bounds. Firstly, existing analysis (see, e.g., in [4,5]) is typically restricted to
a specific group of kernels (most commonly, the Squared Exponential kernel
and the Matérn kernel). A unified understanding of the optimization com-
plexity is lacking. Our work addresses this limitation by providing a unified
general lower bound in terms of metric entropy, which recovers (close-to) state-
of-the-art lower bounds when restricted to specific kernels. Secondly, the lower
bounds with noise can be dominated by a Θ

(
1
ϵ2

)
term (e.g., in [28] for squared

exponential kernel), which may corrupts the understanding for the complexity
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of efficient global optimization. Our work addresses this limitation by proving
bounds in the noiseless regime.

3 Problem Statement

We consider efficient global optimization in a non-Bayesian setting [31]. Specif-
ically, we optimize a deterministic function f from a reproducing kernel Hilbert
space (RKHS) H with input space Rd, where d is the dimension. H is equipped
with the reproducing kernel k(·, ·) : Rd × Rd→R. Let X ⊂ Rd be the known
feasible set (e.g., a hyperbox) of the optimization problem. In the following,
we will use [n] to denote the set {1, 2, · · · , n}. We assume that

Assumption 3.1 X is compact and nonempty.

Assumption 3.1 is reasonable because in many applications (e.g., continuous
hyperparameter tuning) of efficient global optimization, we are able to restrict
the optimization into certain ranges based on domain knowledge. Regarding
the black-box function f ∈ H that we aim to optimize, we assume that,

Assumption 3.2 ∥f∥H ≤ R, where R is a positive real number and ∥ · ∥H is
the norm induced by the inner product associated with H.

Assumption 3.2 requires that the function to be optimized is regular in the
sense that it has bounded norm in the RKHS, which is a common assump-
tion (e.g., [4, 28]) for complexity and convergence analysis.

Assumption 3.3 k(x1, x2) ≤ 1,∀x1, x2 ∈ X and k(x1, x2) is continuous on
Rd × Rd.

Assumption 3.3 is a common assumption for analyzing the convergence and
complexity of efficient global optimization. It holds for a large class of com-
monly used kernel functions (e.g., Matérn kernel and squared exponential ker-
nel) after normalization.

Our problem3 is formulated as

min
x∈X

f(x). (1)

We know that

f(x1)− f(x2) = ⟨f, k(x1, ·)− k(x2, ·)⟩ ≤ ∥f∥H ∥k(x1, ·)− k(x2, ·)∥H .

Hence, it can be shown under Assumptions 3.2 and 3.3, that f is continuous
and thus (1) has an optimal solution on the compact set X . As in standard
efficient global optimization, we restrict ourselves to the zero-order oracle case.
That is, our algorithm can only query the function value f(x) but not higher-
order information at a point x in each step. Based on the function evaluations

3 In the Gaussian process bandit literature, the maximizition formulation is usually
adopted, while in the global optimization literature, the minimization formulation is usually
adopted. Here, we adopt the latter.
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before the current step, the algorithm sequentially decides the next point to
sample. In this paper, we only consider oracle query (namely, function eval-
uation) complexity without considering the complexity of solving auxiliary
optimization problems in typical efficient global optimization algorithms (e.g.,
maximizing the expected improvement).

In this paper, we focus on the performance metric of simple regret r(t).

Definition 3.1 (Simple regret) After t function evaluations, simple regret
r(t) := minτ∈[t] f(xτ )−minx∈X f(x), where [t] := {1, 2, · · · , t}.

Note that in some of the literature, simple regret is also defined as f(x̂t) −
minx∈X f(x), where x̂t is one additional point reported after t steps. Since
we can always pay one more function evaluation for the reported point, this
definition difference will not impact our convergence or complexity analysis.

4 Preliminary

To analyze the problem complexity of efficient global optimization, we need
a metric to measure the complexity of the RKHS. As an extreme example,
if we choose a linear kernel, the underlying function to be optimized is a
linear function. Hence, we can reconstruct it after a finite number of steps
and compute the optimum without any error. The covering number is such a
widely used metric to measure the complexity of an RKHS [41]. To facilitate
our discussion, we introduce some concepts about the complexity of function
sets.

Given a normed vector space (V, ∥·∥) and a subset G ⊂ V , for ϵ > 0, we
make the following complexity related definitions [39].

Definition 4.1 (ϵ-covering) {v1, · · · , vN} is an ϵ-covering of G if

G ⊂ ∪i∈[N ]B∥·∥(vi, ϵ),

where B∥·∥(vi, ϵ) is the ball in V centered at vi with radius ϵ with respect to
the norm ∥·∥.

Definition 4.2 (ϵ-packing) {v1, · · · , vN} ⊂ G is an ϵ-packing of G if

min
i ̸=j

∥vi − vj∥ > ϵ.

Definition 4.3 (Covering number) The covering number N (G, ϵ, ∥·∥) is
defined to be min {n | ∃ϵ-covering {v1, · · · , vn} with cardinality n}.

Definition 4.4 (Packing number) The packing number M(G, ϵ, ∥·∥) is de-
fined to be max {n | ∃ϵ-packing {v1, · · · , vn} with cardinality n}.

Definition 4.5 (Metric entropy) The metric entropy of (G, ∥·∥) is defined
to be logN (G, ϵ, ∥·∥), where N is the covering number.

It can be verified that,
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Proposition 4.1 (Thm. IV, [16]) N (G, ϵ, ∥·∥) ≤ M(G, ϵ, ∥·∥) ≤ N (G, ϵ
2 , ∥·∥).

To facilitate the subsequent complexity analysis, we use x1, x2, · · · , xt to de-
note the sequence of evaluated points up to step t. We now formalize the
concept of deterministic algorithm for solving the efficient global optimization
problem.

Definition 4.6 (Deterministic algorithm) A deterministic algorithm A
for solving the optimization problem in (1) is a sequence of mappings (πt)

∞
t=1,

where πt : (X×R)t−1→X , t ≥ 2 and π1 : {∅}→X . When running the algorithm
A, the sample at step t is xt = πt((xτ , f(xτ ))

t−1
τ=1), t ≥ 2 and x1 = π1(∅).

Note that deterministic algorithms include most of the popular acquisition
functions based efficient global optimization algorithms (e.g., lower/upper con-
fidence bound [31] and expected improvement [13]).

We assume that the first sample point x1 is deterministic, either given
before running the algorithm or chosen by the algorithm. Now, if we suppose
that f is such that the algorithm observes a sequence of 0’s for every function
evaluation f(xτ ), it will generate a deterministic sample trajectory. We will
see in our main result that this trajectory can be used to construct adversarial
functions to derive the lower bound. We formally define it below.

Definition 4.7 (Zero sequence) Given a deterministic algorithm A = (πt)
∞
t=1.

We set x0
1 = π1(∅). Applying the recurrence relationship x0

t = πt((x
0
τ , 0)

t−1
τ=1),

we get a deterministic sequence x0
1, x

0
2, · · · , x0

t , · · · , which only depends on the
algorithm A. We call this sequence the zero sequence of the algorithm A.

5 Main Results

Our strategy to derive the lower bound is decomposing the RKHS into two or-
thogonal subspaces with one of them expanding as more samples are obtained,
as shown in Fig. 1. Then, we can project the function space ball into these
two subspaces. We will show that as the number of sampled points grows, the
covering number of the ball’s projection into one subspace increases and the
other decreases. We derive the lower bound on the number of optimization
steps by bounding the increase/decrease rate. All the proofs of the lemmas
and theorems are attached in the Appendix, except Lem. 5.4 and Thm. 5.1.
Before proceeding, we introduce some notations.
Notations For f ∈ H, f |X : X→R is defined as f |X (x) = f(x),∀x ∈ X . For
Q ⊂ H, we use Q(X ) to denote the set {f |X |f ∈ Q}, which is a subset of
C(X , ∥·∥∞), the continuous function space over X . Q(X ) is considered as a
subset of C(X , ∥·∥∞) in N (Q(X ), ϵ, ∥·∥∞) and M(Q(X ), ϵ, ∥·∥∞).

We first decompose the RKHS into two orthogonal subspaces.

Definition 5.1 H∥
t := {

∑
i∈[t] αik(xi, ·)|αi ∈ R}, H⊥

t := {f ∈ H|f(xi) =

0,∀i ∈ [t]}.
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Fig. 1 The function space view of our proof strategy.

Notice that H∥
t expands when we have more and more function evaluation data.

In parallel, H⊥
t shrinks. We then consider the intersection of the function space

ball S with H∥
t and H⊥

t .

Definition 5.2 S := {f |f ∈ H, ∥f∥H ≤ R}, S∥
t := H∥

t ∩ S, S⊥
t := H⊥

t ∩ S.

With these definitions, we can show that any function in S can be decomposed
into two functions in S

∥
t and S⊥

t , respectively.

Lemma 5.1 ∀f ∈ S, there exists mt ∈ S
∥
t , such that f −mt ∈ S⊥

t .

Remark 5.1 When the matrix K = (k(xi, xj))i,j∈[t] is invertible, we can
check that mt(x) = fT

XK−1KXx, where fX = [f(x1), f(x2), · · · , f(xt)]
T and

KXx = [k(x1, x), k(x2, x), · · · , k(xt, x)]
T , satisfies mt ∈ S

∥
t and f −mt ∈ S⊥

t .
The function mt(x) is exactly the posterior mean function in Gaussian process
regression.

Intuitively, we can add some function from S⊥
t to f without changing the

historical evaluations at x1, · · · , xt. If we have some way of lower bounding
the complexity of S⊥

t , we may be able to find a perturbing function from S⊥
t

that leads to sub-optimality. We will try to lower bound the complexity of S⊥
t

through Lem. 5.2 and Lem. 5.3.
Since S

∥
t and S⊥

t are orthogonal to each other in the RKHS, it is intuitive
that the complexity of S can be decomposed into the complexity of S⊥

t and
S
∥
t . Formally, we have Lem. 5.2.

Lemma 5.2 For any ϵ
∥
t > 0, ϵ⊥t > 0, we have

M(S⊥
t (X ), ϵ⊥t , ∥·∥∞) ≥

N (S(X ), ϵt, ∥·∥∞)

N (S
∥
t (X ), ϵ

∥
t , ∥·∥∞)

,
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where ϵt = ϵ
∥
t + ϵ⊥t .

Lem. 5.2 is proved based on Lem. 5.1. With Lem. 5.2, we can lower bound
M(S⊥

t (X ), ϵ⊥t , ∥·∥∞) if we are able to upper bound N (S
∥
t (X ), ϵ

∥
t , ∥·∥∞).

Since S
∥
t is inside a finite dimensional space H∥

t , we can show that,

Lemma 5.3 If 0 < ϵ < R
4 , we have logN (S

∥
t (X ), ϵ, ∥·∥∞) ≤ 2t log

(
R
ϵ

)
.

We then give the following key lemma.

Lemma 5.4 For 0 < ϵ < ϵ0, if t ≤ logN (S(X ),4ϵ,∥·∥∞)

4 log(R
ϵ )

, then for any sample
sequence x1, · · · , xt, we have,

N (S(X ), 4ϵ, ∥·∥∞)

N (S
∥
t (X ), ϵ, ∥·∥∞)

≥ 2,

where ϵ0 = sup {δ|δ > 0, logN (S(X ), 4δ, ∥·∥∞) > 2 log 2}.

Proof By assumption that t ≤ logN (S(X ),4ϵ,∥·∥∞)

4 log(R
ϵ )

, we have

2t log

(
R

ϵ

)
≤ 1

2
logN (S(X ), 4ϵ, ∥·∥∞).

By ϵ < ϵ0 and the definition of ϵ0, 1
2 logN (S(X ), 4ϵ, ∥·∥∞)− log 2 > 0. We also

notice that logN (S(X ), R, ∥·∥∞) = 0 < 2 log 2 and thus, ϵ0 ≤ R
4 . We then can

apply Lem. 5.3 to derive,

logN (S
∥
t (X ), ϵ, ∥·∥∞) ≤ 2t log

(
R

ϵ

)
≤ 1

2
logN (S(X ), 4ϵ, ∥·∥∞) +

1

2
logN (S(X ), 4ϵ, ∥·∥∞)− log 2︸ ︷︷ ︸

positive
= logN (S(X ), 4ϵ, ∥·∥∞)− log 2,

where the first inequality follows by Lem. 5.3 and the second by assumption
on t. So N (S(X ),4ϵ,∥·∥∞)

N (S
∥
t (X ),ϵ,∥·∥∞)

≥ 2. ⊓⊔

We are now ready to give our main result in Thm. 5.1.

Theorem 5.1 If there exists a deterministic algorithm that achieves simple
regret r(T ) ≤ ϵ for any function f ∈ S in T function evaluations for our
problem (1), it is necessary that,

T = Ω

(
logN (S(X ), 4ϵ, ∥·∥∞)

log(Rϵ )

)
. (2)

Before we prove Thm. 5.1, we give a sketch of the proof. For any deter-
ministic algorithm and any number of optimization steps t, we consider the
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corresponding deterministic zero sequence x0
1, x

0
2, · · · , x0

t as defined in Def. 4.7.
We try to construct an adversarial function inside the corresponding S⊥

t with
0 function value at the points x0

i , i ∈ [t] and low function values at some point
that is not sampled. The possible minimal value of such an adversarial function
links to the covering number of the set S⊥

t (X ), which can be lower bounded
by combining Lem. 5.2 and Lem. 5.3.

Proof (Proof of Thm. 5.1) Given an deterministic algorithm A = (πt)
+∞
t=1 ,

if it always gets the evaluations 0, then the sample trajectory satisfies,

x0
t = πt

(
(x0

τ , 0)
t−1
τ=1

)
, t ≥ 2,

which is exactly the zero sequence of the algorithm. Note that the zero sequence
x0
t only depends on the deterministic algorithm A. Once we fix the algorithm,

the zero sequence is fixed.
We want to check the feasibility of the problem (3),

min
s∈S,x∈X

1 s.t.
{
s
(
x0
n

)
= 0, ∀n = 1, . . . , t,

s(x) < −ϵ.
(3)

Any feasible solution of (3) has some ‘adversarial’ property against the algo-
rithm A. In fact, suppose that (s̄, x̄) is a feasible solution for problem (3), when
we run the algorithm A over s̄, the sample sequence up to step t is exactly the
zero sequence truncated at step t and r(t) = minτ∈[t] s̄(x

0
τ )−minx∈X s̄(x) > ϵ.

Now the question is under what condition, the problem (3) is feasible. Since
we are analyzing the asymptotic rate, we restrict to the case ϵ < ϵ0, where
ϵ0 is given in Lem. 5.4. By Lem. 5.4 and Lem. 5.2, if t ≤ logN (S(X ),4ϵ,∥·∥∞)

4 log(R
ϵ )

,
for the sample sequence x0

1, · · · , x0
t corresponding to any given algorithm, we

have,
M(S⊥

t (X ), 3ϵ, ∥·∥∞) ≥
N (S(X ), 4ϵ, ∥·∥∞)

N (S
∥
t (X ), ϵ, ∥·∥∞)

≥ 2.

Therefore, there exists functions f1, f2 ∈ S⊥
t , such that, ∥f1|X − f2|X ∥∞ ≥ 3ϵ.

So ∥f1|X ∥∞ + ∥f2|X ∥∞ ≥ ∥f1|X − f2|X ∥∞ ≥ 3ϵ and at least one of f1 and f2
has L∞ norm over the set X at least 3ϵ

2 . Without loss of generality, we assume
∥f1|X ∥∞ ≥ 3ϵ

2 . Since for ∀g ∈ S⊥
t , −g ∈ S⊥

t , there exists f̂ ∈ S⊥
t (either f1 or

−f1), such that,
inf
x∈X

f̂(x) ≤ −3ϵ

2
.

When applying the given algorithm to f̂ , if t ≤ logN (S(X ),4ϵ,∥·∥∞)

4 log(R
ϵ )

, the subop-
timality gap or the simple regret r(t) is at least 3

2ϵ. Therefore, to reduce the
simple regret r(T ) ≤ ϵ for all the functions in S within T steps, it is necessary
that,

T = Ω

(
logN (S(X ), 4ϵ, ∥·∥∞)

log(Rϵ )

)
. □
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To verify the effectiveness of Thm. 5.1, we apply it to a simple case in Ex. 5.1.

Example 5.1 For the quadratic kernel k(x, y) = (xT y)2, the corresponding
RKHS is finite dimensional and is given as [20],

H =
{
fA(x) = xTAx|A ∈ Sd×d

}
, (4)

where Sd×d is the set of symmetric matrices of size d× d. We know that,

⟨fA1 , fA2⟩H = ⟨A1, A2⟩F, (5)

where ⟨·, ·⟩F is the Frobenius inner product. Since Sd×d can be embedded into
R

d×(d+1)
2 and the metric entropy for compact set in Euclidean space is Θ

(
log 1

ϵ

)
as discussed in [39], the lower bound in Thm. 5.1 reduces to a constant. By
applying a grid search algorithm for the quadratic kernel, we can identify the
ground truth function after a finite number of steps and determine the optimal
solution without any error. Therefore, the lower bound is tight in ϵ for the
quadratic kernel.

5.1 Comparison with upper bounds for commonly used kernels

Ex. 5.1 demonstrates the validity of Thm. 5.1 for simple quadratic kernel
functions. In this section, we will derive kernel-specific lower bounds for the
squared exponential kernel and the Matérn kernels by using Thm. 5.1 and
existing estimates of the covering numbers for their RKHS’s. We compare our
lower bounds with derived/existing upper bounds and show that they nearly
match.

5.1.1 Squared Exponential kernel

One widely used kernel in efficient global optimization is the squared expo-
nential (SE) kernel given by

k(x, y) = exp

{
−∥x− y∥2

σ2

}
. (6)

In this case, we restrict to X = [0, 1]d. By applying Thm. 5.1, we have,

Theorem 5.2 With X = [0, 1]d and using the squared exponential kernel,
if there exists a deterministic algorithm that achieves simple regret r(T ) ≤ ϵ
for any function f ∈ S in T function evaluations for our problem (1), it is
necessary that,

T = Ω

((
log

R

ϵ

)d/2−1
)
. (7)
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Furthermore, there exists a deterministic algorithm and T satisfying

T = O

((
log

R

ϵ

)d
)

such that the algorithm achieves r(T ) ≤ ϵ in T function evaluations for any
f ∈ S.

The upper bound part is obtained through sampling non-adaptively to
reduce the posterior variance to a uniform low level in X . In this theorem,
we focus on the asymptotic analysis of efficient global optimization and hide
the coefficients that may depend on the dimension. We notice that the upper
bound and lower bound are both polynomial in log 1

ϵ and nearly match, up to
a replacement of d/2 by d in the order and one additional logarithmic term
log R

ϵ .

5.1.2 Matérn kernel

In this section, we consider the Matérn kernel,

k(x, y) = Cν(∥x− y∥) = σ2 2
1−ν

Γ (ν)

(√
2ν

∥x− y∥
ρ

)ν

Kν

(√
2ν

∥x− y∥
ρ

)
, (8)

where ρ and ν are positive parameters of the kernel function, Γ is the gamma
function, and Kν is the modified Bessel function of the second kind.

Theorem 5.3 With X = [0, 1]d and the Matérn kernel, if there exists a deter-
ministic algorithm that achieves simple regret r(T ) ≤ ϵ for any function f ∈ S
in T function evaluations for our problem (1), it is necessary that,

T = Ω

((
R

ϵ

) d
ν+d/2

(
log

R

ϵ

)−1
)
. (9)

Furthermore, there exists a deterministic algorithm and T satisfying,

T = O

((
R

ϵ

) d
ν

)
, (10)

such that the algorithm achieves r(T ) ≤ ϵ in T function evaluations for any
f ∈ S.

Remark 5.2 The upper bound part of Thm. 5.3 is proved by Thm. 1 of [4].
We also notice that [4] provides a lower bound of the same order as the upper
bound in Eq. (10), which means that the upper bound order is also the optimal
lower bound order.

Remark 5.3 When ν ≥ 1
2d, our lower bound can further imply the lower

bound of Ω
((

R
ϵ

) d
2ν
(
log R

ϵ

)−1
)

, which nearly matches the upper bound, up to
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a replacement of d/2 by d and a logarithmic term log R
ϵ . However, when ν

d is
small, there is still a significant gap between the lower bound implied by our
general lower bound and the optimal lower bound.

Remark 5.4 There are two possible reasons why the bound is not tight. One
potential reason is that we apply a conservative lower estimate for the metric
entropy corresponding to the Matérn kernel. The other is that our metric-
entropy approach is limited in the regime of small smoothness parameter ν.
Filling this gap is left as future work.

6 Experiments

In this section, we will first give a demonstration of adversarial functions, on
which two common algorithms, the lower confidence bound (LCB) [31] and
the expected improvement (EI) [13], perform poorly and achieve the optimiza-
tion lower bound. Both algorithms model the unknown black-box function as
sampled from a Gaussian process. The idea of LCB algorithm is minimizing
the lower confidence bound, which is defined to be posterior mean minus a
coefficient times posterior standard deviation, to get the next sample point
in each step. The EI algorithm maximizes the expected improvement with re-
spect to the best observed value so far to get the next sample point. Then we
run the two algorithms on a set of randomly sampled functions and compare
the average performance and the adversarial performance in terms of simple
regret. The algorithms are implemented based on GPy [11] and CasADi [1].
All the auxiliary optimization problems in the algorithms are solved using the
solver IPOPT [35] with multiple different starting points. Our experiments take
about 15 hours on a device with AMD Ryzen Threadripper 3990X 64-Core
Processor and 251 GB RAM.

6.1 Demonstration of adversarial functions

In our proof of Thm. 5.1, we use a particular set of adversarial functions, which
reveal value 0 to the algorithm and have low values somewhere else. In this
section, we demonstrate such adversarial functions for two popular algorithms,
expected improvement and lower confidence bound.

We use the Matérn kernel in one dimension with ν = 5
2 , ρ = 1, σ2 = 1.

We set the compact set to X = [−10, 10] and assume that the RKHS norm
upper bound is R = 1. We apply both lower confidence bound algorithm with
the constant weight 1 for the posterior standard deviation and the expected
improvement algorithm. We manually assign x1 = 0 as the first sampled point
and derive the adversarial function by solving Prob. (11).

min
x∈X

min
s∈H

s(x) s.t.
{
s
(
x0
n

)
= 0, ∀n = 1, . . . , t,

∥s∥H ≤ R
(11)
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Fig. 2 Demonstrations of adversarial functions in dimension one.

Thanks to the optimal recovery property [38, Thm 13.2], the optimal value for
the inner problem of (11) can be analytically derived as

−R
√
k(x, x)− k(x,X)TK−1k(X,x).

Fig. 2 demonstrates the adversarial functions inside the corresponding RKHS
with bounded norm of 1, which have value 0 at all the sampled points but
have low global optimal value somewhere else. We notice that the envelope
formed by the functions inside the ball with consistent evaluation data shrinks
as more and more data becomes available. Intuitively, any algorithm needs to
sample sufficiently densely globally in the adversarial case in order to find a
close-to-optimal solution.

6.2 Average vs. adversarial performance

The proofs of Thm. 5.2 and Thm. 5.3 indicate that a non-adaptive sampling al-
gorithm can achieve a close-to-optimal worst-case convergence rate. However,
in practice, adaptive algorithms (e.g., lower confidence bound and expected
improvement) are usually adopted and perform better. There could poten-
tially be a gap between average-case convergence and worst-case convergence.
To perform such a comparison, we randomly sample a set of functions from
the RKHS to run the algorithms over. Specifically, we first uniformly sam-
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Fig. 3 Comparison of average performance (±standard deviation shown as shaded area, over
100 instances) and adversarial performance. Adversarial simple regret is defined as opposite
of the optimal value of Prob. (11), namely the simple regret of the adversarial function at
different optimization steps. Since the simple regret is defined as the best sampled function
value minus the global optimal value (see the definition 3.1), this plot can also be seen as
the convergence rate plot if the algorithm reports the best sampled point.

ple a finite set of knots X ⊂ X and then sample the function values fX on
the knots from the marginal distribution of the Gaussian process, which is a
finite-dimensional Gaussian distribution. We then construct the minimal norm
interpolant of the knots as the sampled function. To be consistent with the
bounded norm assumption, we reject the functions with a norm value larger
than R.

We use simple regret, which is defined to be minτ∈[t] f(xτ )−minx∈X f(x),
to measure the performance of different algorithms. We set X = [0, 1]3 ⊂
R3 and set the length scales and variances of both the Matérn kernel func-
tion (with ν = 5

2 ) and the squared exponential kernel. Fig. 3 shows the com-
parison of average simple regret and adversarial simple regret. We observe
that the average performance is much better than the performance on ad-
versarial functions in terms of simple regret. Intuitively, adversarial functions
are only a subset of needle-in-haystack functions, with most region flat and
somewhere very small, when t becomes large. For those adversarial functions
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such as shown in Fig. 2, it can be difficult for the efficient global optimization
algorithms to “see” the trend of the function. For common functions inside the
function space ball, however, the algorithms are still able to detect the trend
of the function value and find a near-to-optimal solution quickly.

7 Conclusions

In this paper, we provide a general lower bound on the worst-case suboptimal-
ity or simple regret for noiseless efficient global optimization in a non-Bayesian
setting in terms of the metric entropy of the corresponding reproducing ker-
nel Hilbert space (RKHS). We apply the general lower bounds to commonly
used specific kernel functions, including the squared exponential kernel and
the Matérn kernel. We further derive upper bounds and compare them to
the lower bounds and find that they nearly match, except for the case for
the Matérn kernel when ν

d is small. Two interesting future research directions
are deriving an upper bound on the worst-case convergence rate in terms of
metric entropy and characterizing the average-case convergence rate. We also
conjecture that introducing randomness into the existing algorithms can im-
prove the worst-case performance. An expected analysis challenge is that our
current approach is sensitive to randomness. We also leave the extension of
our analysis to the noisy case as future work.

Acknowledgements This work was supported by the Swiss National Science Founda-
tion under the NCCR Automation project, grant agreement 51NF40_180545 and the RISK
project (Risk Aware Data-Driven Demand Response, grant number 200021_175627).

Appendix

A Proof of Lemma 5.1

Consider the optimization problem below,

min
s∈H

∥s∥2H s.t. s (xn) = f(xn), ∀n = 1, . . . , t. (12)

Based on the representer theorem [36, Theorem 1.3.1], the optimal solution of (12) has the
form

∑t
i=1 αik(xi, ·). By using the constraint s(xn) = f(xn), we can derive Kα = fX , where

fX = [f(x1), f(x2), · · · , f(xn)]T and K = (k(xi, xj))i∈[n],j∈[n]. With this restriction, we
transform the problem in (12) to the problem in (13).

min
α∈Rt

αTKα s.t. Kα = fX (13)

We take α∗ as the solution to the problem in (13), whose feasibility is guaranteed by represen-
ter theorem [36] and the non-emptiness of the feasible set (f is feasible for (12)). Therefore,
mt(x) = (α∗)TKXx is the optimal solution to (12). Since f is a feasible solution for the
problem (12), ∥mt∥H ≤ ∥f∥H ≤ R. In addition, (f −mt)(xi) = f(xi)−mt(xi) = 0,∀i ∈ [t].
And ∥f −mt∥2H = ∥f∥2H + ∥mt∥2H − 2⟨f,mt⟩ = ∥f∥2H − ∥mt∥2H ≤ R2. So mt ∈ S

∥
t and

f −mt ∈ S⊥
t .
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B Proof of Lemma 5.2

Let (p1, p2, · · · , pm) be an ϵ
∥
t -covering of S

∥
t (X ) and (q1, q2, · · · , qn) an ϵ⊥t -covering of

S⊥
t (X ). Then ∀f ∈ S, by Lem. 5.1, f = mt + (f −mt), where mt ∈ S

∥
t and f −mt ∈ S⊥

t .
By the definition of covering, ∃pi, such that ∥mt|X − pi∥∞ ≤ ϵ

∥
t and ∃qj , such that

∥(f −mt)|X − qj∥∞ ≤ ϵ⊥t . So

∥f |X − (pi + qj)∥∞ ≤ ∥mt|X − pi∥∞ + ∥(f −mt)|X − qj∥∞ ≤ ϵ
∥
t + ϵ⊥t = ϵt.

So the set {pi + qj |i ∈ [m], j ∈ [n]} is an ϵt-covering of S(X ) and we have the cardinality

|{pi + qj |i ∈ [m], j ∈ [n]}| = N (S⊥
t (X ), ϵ⊥t , ∥·∥∞)N (S

∥
t (X ), ϵ

∥
t , ∥·∥∞) ≥ N (S(X ), ϵt, ∥·∥∞).

So M(S⊥
t (X ), ϵ⊥t , ∥·∥∞) ≥ N (S⊥

t (X ), ϵ⊥t , ∥·∥∞) ≥ N (S(X ),ϵt,∥·∥∞)

N (S
∥
t (X ),ϵ

∥
t ,∥·∥∞)

.

C Proof of Lemma 5.3

We first introduce the set, Et = {α ∈ Rt|αTKtα ≤ R2}, where Kt = (k(xi, xj))i,j∈[t].
Without loss of generality, we assume that Kt has full rank in the following analysis. Notice
that if this condition does not hold, we only need to restrict to the subspace spanned by the
eigenvectors of Kt with strictly positive eigenvalues and consider the intersection of Et with
the subspace. Since the restriction only reduces the essential dimension, the upper bound
still holds. We introduce the norm ∥α∥Kt

=
√

αTKtα. We then have, ∀f(x) = αT k(X,x) ∈
S
∥
t (X ), g(x) = βT k(X,x) ∈ S

∥
t (X ), we have

∥f − g∥∞ = sup
x∈X

|(α− β)T k(X,x)| = sup
x∈X

|⟨
∑
i∈[t]

(αi − βi)k(xi, ·), k(x, ·)⟩| (14)

≤ sup
x∈X

∥∥∥∥∥∥
∑
i∈[t]

(αi − βi)k(xi, ·)

∥∥∥∥∥∥
H

∥k(x, ·)∥H ≤ sup
x∈X

∥α− β∥Kt

√
k(x, x) ≤ ∥α− β∥Kt

.

Therefore, we have N (S
∥
t (X ), ϵ, ∥·∥∞) ≤ N (Et, ϵ, ∥·∥Kt

). We further have,

N (Et, ϵ, ∥·∥Kt
) ≤ M(Et, ϵ, ∥·∥Kt

) ≤
Vol

(
B∥·∥Kt

(
0, R+ ϵ

2

))
Vol

(
B∥·∥Kt

(
0, ϵ

2

)) (15a)

=

(
2R

ϵ
+ 1

)t

≤
(

R2

2ϵ2
+

R2

2ϵ2

)t

=

(
R

ϵ

)2t

. (15b)

The second inequality in (15) follows by that if α1, α2, · · · , αM is an ϵ-packing of the set
Et, then ∪i∈[M ]B∥·∥Kt

(
αi,

ϵ
2

)
⊂ B∥·∥Kt

(
0, R+ ϵ

2

)
and B∥·∥Kt

(
αi,

ϵ
2

)
∩ B∥·∥Kt

(
αj ,

ϵ
2

)
=

∅, ∀i ̸= j by the definition of packing. The third inequality in (15) follows by the assumption
of 0 < ϵ < R

4
. So logN (Et, ϵ, ∥·∥Kt

) ≤ 2t log
(

R
ϵ

)
. Therefore, logN (S

∥
t (X ), ϵ, ∥·∥∞) ≤

2t log
(

R
ϵ

)
.
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D Proof of Theorem 5.2

By [42, Example 1], the covering number satisfies,

logN (S(X ), 4ϵ, ∥·∥∞) = Ω

(
log

(
R

ϵ

) d
2

)
. (16)

Therefore, Thm. 5.1 implies that,

T = Ω

((
log

R

ϵ

) d
2
−1
)

. (17)

We now focus on proving the upper bound part. To facilitate the following proof, we define,

¯
ft(x) = mt(x)− σt(x)

√
R2 − fT

XK−1fX , (18)

f̄t(x) = mt(x) + σt(x)
√

R2 − fT
XK−1fX , (19)

where mt(x) = fT
XK−1KXx and σt(x) =

√
k(x, x)−KxXK−1KXx. Note that with squared

exponential kernel and the sampled points set X to be used in this proof, the invertibility
of the matrix K is guaranteed. As implied by [19, Prop. 1],

f(x) ∈ [
¯
ft(x), f̄t(x)]. (20)

We consider the algorithm that evaluates the grid points

X =

{(
k1

N
,
k2

N
, · · · ,

kd

N

)∣∣∣∣ ki ∈ {0, 1, · · · , N − 1}
}

without adaptation, and evaluate the point x̃t before termination after t = Nd function
evaluations on the grid points, where x̃t is given as,

x̃t = arg min
x∈X ¯

ft(x). (21)

Let x∗ denote the ground truth optimal solution. We can bound the suboptimality,

f(x̃t)− min
x∈X

f(x) ≤ f̄t(x̃t)− f(x∗) (22a)

≤ f̄t(x̃t)−
¯
ft(x

∗) (22b)
≤ f̄t(x̃t)−

¯
ft(x̃t) (22c)

= 2σt(x̃t)
√

R2 − fT
XK−1fX (22d)

≤ 2Rσt(x̃t), (22e)

where the inequalities in (22a) and (22b) follow by (20) and the inequality (22c) follows by
the definition of x̃t in (21). We now try to upper bound σt(x̃t). We first introduce a set of
Lagrangian interpolation functions,

wα,N (x) =
∏

i∈[N ]

∏
j∈[N ],j ̸=αi

xi − j/N

αi/N − j/N
, x ∈ [0, 1]d, α ∈ [N ]d.

Let wN (x) =
(
wα,N (x)

)
α∈[N ]d

and βN (x) = K−1KXx ∈ RNd , we have

(σt(x))
2 = k(x, x)−KxXK−1KXx (23a)
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= k(x, x)− 2KxXβN (x) + βN (x)TKβN (x) (23b)

= min
y∈RNd

(k(x, x)− 2KxXy + yTKy) (23c)

≤ k(x, x)− 2KxXwN (x) + wN (x)TKwN (x). (23d)

Let k0(x) denote the function k(0, x) and k̂0 its corresponding Fourier transformation. By
inverse Fourier transformation, we have,

k(x, x)− 2KxXwN (x) + wN (x)TKwN (x) (24a)

= (2π)−d

∫
Rd

k̂0(ξ)

1− 2
∑

α∈[N ]d

wα,N (x)eiξ·(x−
α
N ) (24b)

+
∑

α∈[N ]d,β∈[N ]d

wα,N (x)e
iξ·

(
β
N

− α
N

)
wβ,N (x)

 dξ (24c)

= (2π)−d

∫
Rd

k̂0(ξ)

∣∣∣∣∣∣1−
∑

α∈[N ]d

wα,N (x)eiξ·(x−
α
N )

∣∣∣∣∣∣
2

dξ (24d)

= (2π)−d

∫
Rd

k̂0(ξ)

∣∣∣∣∣∣e−i ξ
N

·Nx −
∑

α∈[N ]d

wα,N (x)e−i ξ
N

·α

∣∣∣∣∣∣
2

dξ (24e)

= (2π)−d

∫
Rd

k̂0(ξ)

∣∣∣∣∣∣e−i ξ
N

·Nx −
∑

α∈[N ]d

wα,N (x)e−i ξ
N

·α

∣∣∣∣∣∣
2

dξ (24f)

= (2π)−d

∫
ξ∈[−N

2
,N
2
]d

k̂0(ξ)

∣∣∣∣∣∣e−i ξ
N

·Nx −
∑

α∈[N ]d

wα,N (x)e−i ξ
N

·α

∣∣∣∣∣∣
2

dξ (24g)

+ (2π)−d

∫
ξ ̸∈[−N

2
,N
2
]d

k̂0(ξ)

∣∣∣∣∣∣e−i ξ
N

·Nx −
∑

α∈[N ]d

wα,N (x)e−i ξ
N

·α

∣∣∣∣∣∣
2

dξ. (24h)

To proceed, we need to use the Lem. D.1 [41].

Lemma D.1 (Lemma 4.1, [41]) Let x ∈ [0, 1]d and N ∈ N. Then
∑

α∈[N ]d

∣∣wα,N (x)
∣∣ ≤(

N2N
)d and for θ ∈

[
− 1

2
, 1
2

]d, there holds∣∣∣∣∣∣e−iθ·Nx −
∑

α∈[N ]d

wα,N (x)e−iθ·α

∣∣∣∣∣∣ ≤ d

(
1 +

1

2N

)d−1 (
max

1≤j≤d
|θj |
)N

.

We apply the bounds in Lem. D.1 to Eq. (25) and have,

k(x, x)− 2KxXwN (x) + wN (x)TKwN (x) (25a)

= (2π)−d

∫
ξ∈[−N

2
,N
2
]d

k̂0(ξ)

∣∣∣∣∣∣e−i ξ
N

·Nx −
∑

α∈[N ]d

wα,N (x)e−i ξ
N

·α

∣∣∣∣∣∣
2

dξ (25b)

+ (2π)−d

∫
ξ ̸∈[−N

2
,N
2
]d

k̂0(ξ)

∣∣∣∣∣∣e−i ξ
N

·Nx −
∑

α∈[N ]d

wα,N (x)e−i ξ
N

·α

∣∣∣∣∣∣
2

dξ (25c)
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≤ d

(
1 +

1

2N

)d−1

max
1≤j≤d

{
(2π)−d

∫
ξ∈[−N

2
,N
2 ]d

k̂0(ξ)

(
|ξj |
N

)N

dξ

}
(25d)

+

(
1 +

(
N2N

)d)2
(2π)d

∫
ξ/∈[−N

2
,N
2 ]d

k̂0(ξ) dξ. (25e)

We know that k̂0(ξ) = (σ
√
π)de−

σ2|ξ|2
4 . Similar to the analysis in the proof of Example 4

of [41], we first try to bound the first term in the upper bound derived in Eq. (25).

(2π)−d

∫
ξ∈[−N

2
,N
2 ]d

(σ
√
π)de−

σ2|ξ|2
4

(
|ξj |
N

)N

dξ (26a)

=
σ
√
π

2π

∫ N/2

−N/2
e−

σ2ξ2j
4

(
|ξj |
N

)N
∏

k ̸=j

∫ N/2

−N/2

σ
√
π

2π
e−

σ2ξ2k
4 dξk

dξj (26b)

≤
σ
√
π

2π

∫ N/2

−N/2
e−

σ2|ξj |2
4

(
|ξj |
N

)N

dξj ≤
2

√
π

(
2

σN

)N

Γ

(
N + 1

2

)
, (26c)

where Γ (·) is the Gamma function. The first inequality in (26) follows by that∫ N/2

−N/2

σ
√
π

2π
e−

σ2ξ2k
4 dξk ≤

∫ +∞

−∞

σ
√
π

2π
e−

σ2ξ2k
4 dξk = 1

and the second inequality in (26) follows by that∫ N/2

−N/2
e−

σ2|ξj |2
4

(
|ξj |
N

)N

dξj =2

∫ N/2

0
e−

σ2|ξj |2
4

(
|ξj |
N

)N

dξj

≤2

∫ +∞

0
e−

σ2|ξj |2
4

(
|ξj |
N

)N

dξj

and the definition of Gamma function. Applying Stirling’s formula yields

(2π)−d

∫
ξ∈[−N

2
,N
2 ]d

(σ
√
π)de−

σ2|ξ|2
4

(
|ξj |
N

)N

dξ (27a)

≤
2
√
π

(
2

σN

)N

Γ

(
N + 1

2

)
≤ 2

(
2

σN

)N (N + 1

2e

)N+1
2 1

√
N + 1

e
1

6(N+1) (27b)

=

√
2

e
e

1
6(N+1)

2
√

N+1
2

σ
√
eN


N

≤
√
2e

(
2

σ
√
eN

)N

, (27c)

where the second inequality in (27) follows by the Stirling’s formula that

Γ (u) ≤
√
2πuu− 1

2 e−ue
1

12u , u > 0

and the last inequality follows by e
1

6(N+1) ≤ e and N+1
2

≤ N . We are now to bound the
second term in Eq. (25) as follows,

(2π)−d

∫
ξ/∈[−N

2
,N
2 ]d

(σ
√
π)de−

σ2|ξ|2
4 dξ =

(
σ
√
π

2π

∫
ξj /∈[−N

2
,N
2
]
e−

σ2|ξj |2
4 dξj

)d
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=

(
σ
√
π

π

∫ +∞

N/2
e−

σ2

4 (t2−t/2)e−
σ2

4
· t
2 dt

)d

≤
(
σ
√
π

π

∫ +∞

N/2
e
−σ2

4

(
(N

2 )2−(N
4 )

)
e−

σ2

4
· t
2 dt

)d

=

(
σ
√
π
e−

σ2N(N−1)
16

8

σ2
e−

σ2N
16

)d

=

(
8

σ
√
π

)d

e−
σ2

16
dN2

. (28)

Combining (25), (27) and (28) yields

k(x, x)− 2KxXwN (x) + wN (x)TKwN (x) (29a)

≤
√
2ed

(
1 +

1

2N

)d−1 ( 2

σ
√
eN

)N

+

(
1 +

(
N2N

)d)2 ( 8

σ
√
π

)d

e−
σ2

16
dN2

(29b)

≤
√
2ed2d−1

(
2

σ
√
eN

)N

+ 4
(
N2N

)2d ( 8

σ
√
π

)d

e−
σ2

16
dN2

(29c)

=
√
2ed2d−1

(
2

σ
√
eN

)N

+ 4

(
8

σ
√
π

)d

e−
σ2

16
dN2+2d(N log 2+logN) (29d)

≤
√
2ed2d−1

(
2

σ
√
eN

)N

+ 4

(
8

σ
√
π

)d

e−
σ2

16
dN2+2d(log 2+1)N , (29e)

where the first inequality follows by combining (25), (27) and (28), the second inequality
follows by that 1 + 1

2N
≤ 2 and 1 + (N2N )d ≤ 2(N2N )d, and the last inequality follows by

that logN ≤ N . Let N ≥ max{ 32(log 2+2)

σ2 , 4e2d−1

σ2 }, we have

k(x, x)− 2KxXwN (x) + wN (x)TKwN (x) (30a)

≤
√
2ed2d−1

(
2

σ
√
eN

)N

+ 4

(
8

σ
√
π

)d

e−
σ2

16
dN2+2d(log 2+1)N (30b)

≤
√
2ed2d−1

(
e−d

)N
+ 4

(
8

σ
√
π

)d

e−dN (30c)

=

(
√
2ed2d−1 + 4

(
8

σ
√
π

)d
)

e−dN . (30d)

Combining (23), (30) and that Nd = t, we have

σt(x) ≤
(
√
2ed2d−1 + 4

(
8

σ
√
π

)d
) 1

2

e−
1
2
dt1/d , ∀x ∈ [0, 1]d. (31)

Combining that f(x̃t)−minx∈X f(x) ≤ 2Rσt(x̃t) in (22) and (31), we have

f(x̃t)− min
x∈X

f(x) ≤ 2R

(
√
2ed2d−1 + 4

(
8

σ
√
π

)d
) 1

2

e−
1
2
dt1/d . (32)

Setting the right hand side to be smaller than ϵ, we observe that the number of steps t only

needs to be O
((

log R
ϵ

)d)
. This completes the proof.

E Proof of Theorem 5.3

By Lem. 3 in [4], the RKHS on [0, 1]d is equivalent to Sobolev Hilbert space Hν+ d
2 ((0, 1)d).

Implied by [8, Thm. 1, Sec. 3.3.3], the covering number of the function space ball in
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Hν+ d
2 ((0, 1)d) is lower bounded by Ω

((
R
ϵ

) d
ν+d/2

)
. Therefore,

logN (S(X ), 4ϵ, ∥·∥∞) = Ω

((
R

ϵ

) d
ν+d/2

)
. (33)

We then apply Thm. 5.1 such that we can get the lower bound

T = Ω

((
R

ϵ

) d
ν+d/2

(
log

(
R

ϵ

))−1
)

. (34)

The upper bound is implied by Thm. 1 in [4].
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